
A Geometry Search Engine for the Analysis of Systematic
Defects in VLSI

David L. DeMaris
IBM EDA

11400 Burnet Rd, CPYJ
Austin TX, 78758
01-512-838-6186

demaris@us.ibm.com

Dan Maynard
 Bette Bergman Reuter

IBM Microelectronics
1000 River St. Essex Jct. VT, 05452

01-802-288-2042
danielm@us.ibm.com
breuter@us.ibm.com

Shi Zhong
Dept. of CSE

Florida Atlantic University
777 Glades Rd, S&E 366

Boca Raton, FL 33431
01-561-297-3168

zhong@ece.fau.edu

ABSTRACT
We describe a method for identifying layout regions in one or
more designs ranked by similarity to layout implicated in
systematic defects. Defect engineers examine these regions in
hardware for presence of defects to analyze the cause of the
failure. Feature extraction based on intersection filters with
orthonormal basis patterns is performed offline at many possible
defect scales.

Categories and Subject Descriptors
T5.5 [Design for yield robustness, design-to-manufacturing
interface]: .

General Terms
Algorithms, Design

Keywords
Defect analysis, systematic defects, design rule checking, pattern
recognition, pattern spaces

1. INTRODUCTION
Systematic defects in a semiconductor process are those defects
which are not a result of particles interfering with the exposure or
other process steps during manufacturing; instead, they are
associated with optical, chemical, or mechanical process
sensitivity to specific shape configurations. Yield engineers face a
difficult task in identifying the cause of such defects, which
exhibit correlations between design shape configurations and
reduced process tolerance (i.e. the acceptable range of variation in
process parameters). Contemporary semiconductor processes
employ resolution enhancement techniques, like optical proximity
correction (OPC), to compensate for shape deforming influences
of neighboring shape features. This and other rocessing methods
such as chemical-mechanical polishing (CMP) exhibit defects for

which the root cause involves the interaction of a particular local
pattern with the shapes in its context. The same pattern (layout
shape) which results in a deterministic fail (or is not robust to
process variations) in a particular part may not fail in other
locations on the same design, or on a different design due to
differences in context.

The problem faced by the engineers encountering such a failure
can be formulated, in part, as a search task. The engineer first
needs to find regions of interest with a pattern that is similar to
some (possibly unknown) aspect of the pattern causing the defect.
Ultimately, the coordinates of a set of such similar patterns is
used to monitor the same part or other parts in manufacturing to
see whether systematic failures, or distortion of the shapes which
might be defects with process variations, occur in those patterns
as well.

The second part of the engineer’s task is to ascertain what is
different about the similar but non-failing patterns, or what is in
common among the failing patterns. Corrective action can then
be taken, either in the form of process adjustments or updated
design rules.

This paper describes the defect analysis problem and reports
results of an approach to providing automated pattern recognition
capability leveraging existing design rule checking tools.
Detailed introductions to pattern recognition and data mining
techniques are precluded by length constraints, but referenced
throughout the text.

2. BACKGROUND AND METHODS
In this section we describe the characteristics and constraints of
the problem as described by manufacturing engineers, and
introduce terminology. We then outline the basic methods
developed to date, problems with the previous approach, and the
basic methods developed to apply pattern recognition techniques
built on the existing tool infrastructure.

2.1 Problem Characteristics
The systematic defects of concern usually result in shorts, opens,
or high resistance line thinning on single layers, but their root
cause may involve shapes in a larger context. The exact scale of
the defect shapes themselves may vary, as well as the scale of the
relevant context which affects the shape. While the most common
cases involves interactions between shapes on one or two layers,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference 04 Month 1-2, 2000, City, State.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

defects involving specific patterns on up to four layers have been
observed.

 While the most common scenario is to search for similar patterns
in the same design, patterns similar to the defect may also exist in
other technology nodes. Thus, search techniques should be
independent of the detailed dimensions of the target (failing)
pattern.

This combination of multi-scale shapes on several layers has been
referred to as swamps. To support process engineers analyzing
such swamps, a system known as Swampfinder [1,2] has been
deployed. That system requires that a unique design rule
checking (DRC) screen is written to encode a working hypotheses
of the defect configuration. By screen, we mean that the result of
the computation has a binary pass/fail value. The returned shape
configurations which pass the screen are turned into bitmaps and
formatted as a web page for engineers to examine. There are
several problems with this method:

1. It is labor intensive, requiring scarce design rule
checking DRC coding resources devoted to every defect
under analysis.

2. The checks resulting in “target matches” (similar
patterns) must be precisely specified, while the exact
relevant ranges of spacing or width values and
especially contextual information are often not clearly
known.

3. The check may return too many target matches. To
address this, random selection among matches can be
made. However, the random selections may not be
representative, and may not effectively sample the space
of patterns. Process engineers need to see the worst
case examples to learn the process window tolerance.

4. It is iterative but not incremental. When the process
engineer receives the results of this query, it may be
obvious that a slightly refined search was necessary.
However, the loading of the data into efficient search
structures is generally lost and a new batch search must
be executed, resulting in a long delay.

5. There is no measure of distance from match to defect
pattern. Process engineers would like to examine a
range of increasingly dissimilar patterns, if possible, to
ascertain what aspects of the pattern cause the fail.

6. Finally, the DRC screen must often run on full chip
data, entailing long runtimes (possibly multiple days
even on multiprocessing servers). Defect patterns often
occur in wiring layers or at the interface of wiring and
device layers, making exploitation of hierarchy difficult.

Work commenced on a replacement system known as Fuzzy
Swampfinder in 2002, with two generations of prototypes
created. The system overcomes many of the problems
described above by adapting techniques common in other
domains such as multimedia search. Rather than writing
specific screens for each defect, a generic feature extraction
can be performed on the design offline, prior to defect
discovery. The resulting databases for the smallest defects
(i.e. single device shapes) may be quite large (many
gigabytes). In the second generation prototype, we have
introduced region sampling techniques to allow control over
the amount of data collected.

To accelerate the search process for the largest offline
generated feature databases, the system design and
prototypes have used clustering and index methods.

 A schematic of the staged system design is shown in Figure
1. Prototype work to date has addressed the components of
the first stage only. Given a successful design, more direct
interfaces to manufacturing imaging and analysis tools may
be introduced to facilitate the workflow of process engineers.

The remainder of section 2 describes the stage one
components - feature extraction , clustering, and search
methods - in more detail.

2.2 Feature Extraction
Many pattern recognition methods and descriptors have been
developed for various classes of data including shapes and
images. Two major families are structural and statistical pattern
recognition. Both generally rely on decomposition of the input
data into features. For the requirement of ordering matches by
distance from the target, the statistical approach was chosen as
more straighforward. Each configuration of shapes can be
considered as a point in a pattern space, with distances in the
space computed by standard methods.
VLSI layout on a single layer can be considered as binary image.
However, the data is universally stored in a geometric vector
description, with rasterization performed by layout editors and at
final mask generation. While many feature extraction methods on
images are known, it was desired to avoid the cost of
rasterization; also the processing demands of most image based
methods on fine-grained images of layout would be prohibitive
and possibly unnecessary. Each pixel would have to be on the
order of minimum design steps, since designers have flexibility to
create shape borders with fine steps as long as minimum shape
widths are exceeded, and specific shapes may be a source of
lithography related defects. Instead, we have adapted the ideas of
transform methods on images to work in the geometric data.

The Walsh Transform [3,4] is a well known method for
decomposing signals or images into coefficients of an
orthonormal basis, by measuring the energy of each component
in an image; this can be considered a “square wave basis ” version
of the Fourier transform. Our method is to create two dimensional

Manufacturing
Defect

Query
environment

Clustering
and Search

Design
Layout

Feature
Extraction Manufacturing

Line Imaging
Tools

Stage One Stage Two

Match Review
Environment Test Site

Synthesis

Figure 1. Schematic of Pattern Recognition Based
Defect Analysis Flow

Walsh patterns [5] and to perform intersections of target and
search layout regions with a full orthogonal set of such patterns,
scaled to match a standard set of target region sizes. The set of N
2-dimensional patterns are formed by creating matrix H, a

Hadamard matrix [6] of dimension

!

N " N then to apply the
following procedure:

Rotate H by –90 to produce matrix had_h
Rotate H by 180 to produce matrix had_v
To produce i-th pattern Wi {
h’=Replicate each row of had_h to dimension of H
 v’= Replicate each column of had_v to dimension of H
Wi = Multiply the h’ and v’ matrices elementwise
}

The matrix Wi now consists of values 1, -1, with +1
corresponding to the on (shape) regions and –1 as off (no shape).
The “tiles”created from contiguous blocks in the pattern (see Fig.
2, upper region) are scaled to fit the desired defect region of
interest height and width. These patterns are intersected with
shapes in regions on each layer; the regions may completely cover
the layout in a regular tiling, or may consist of sample regions
randomly distributed over the layout. In Fig. 2, the layout shapes
are intersected with the white regions of the shown tiled Walsh
pattern; the remaining shapes after intersection with on tiles are
shown on the lower right. The area of the intersected shapes over
the entire region is the basic quantity constituting each field in a
feature vector. Several functions the intersection area and other
derived area have been tested as described in section 3.1

Some simple function of the intersection area is then stored as a
numerical value; (functions are described in section 3.1). Each
design layer of interest is stored as subset of the vector. A vector
has dimension d = l * w, where l is the number of layers and w the
number of Walsh patterns used. A feature database consists of N
vectors, one for each region.

Since the spatial resolution of individual tiles in the patterns is
greater than the minimum line position, the resulting vector is
lossy and cannot recover the original shapes. By increasing the
order of Walsh functions or replicating and scaling, we can trade
off processing time and storage against feature extraction quality.

In the prototype we have used 16 Walsh patterns shown in Figure
2. These were initially formed as 4x4 tiles. Later, to increase the
spatial resolution the underlying matrix was replicated and halved
in spatial scale resulting in 8x8 tiles. This increases the spatial
frequency, while reducing positional information. For arbitrary
spatial configurations this would be of no benefit, but layout
configurations are restricted by minimum width and spacing
constraints and the imperative for design density. Both the
subjective match quality and quantitative measures of clustering
error (i.e. the measure in section 3.2) indicate that the high
frequency 8x8 patterns produce better results for target shape
configurations tested to date.

Walsh patterns are generated at several scales, and each scale is
run on each layer of interest in the offline processing step. The
scales are defined in a technology independent fashion, in terms
of minimum wire pitch on the finest pitch layer for the
technology. This supports a requirement to be able to search for
defects in different technologies. DRC code and the
corresponding Walsh patterns are synthesized for a particular
technology from parameterized scripts.

In principle the regions need not be square, though in the
prototype this has been the case. Walsh patterns may be
synthesized at the time of target formation to match any aspect
ratio, but require another batch feature extraction for non-standard
aspect ratios.

In the second prototype stage, sampling of regions was introduced
to reduce the data volume. Regions of the desired scale are
generated at random locations; cells containing Walsh patterns are
merged to those locations and intersections performed. The
[institution] DRC system Niagara includes a “throw defect”
feature originally developed for critical area analysis that was
useful in this computation. Another feature known as chaining is
critical for the correct operation of the sampling subsystem.
Chaining modifies the default iteration character of the DRC
engine to apply a sequence of operations on a shape by shape
basis and accumulate the results for each shape, rather than the
default behavior of applying shape operations to all shapes on a
level. By using region boundaries and chaining we are able to
implement the desired intersection filters, and to avoid storage
costs of intermediate shape results.

2.3 Translation Invariance
The recognition of geometric transformations (translation, rotation
in the plane) is always an issue in shape or image recognition. In
the current system there are three aspects of the overall design
which attempt to ameliorate the problem of recognizing translated
or rotated variants.

1. The Walsh patterns are of relatively low spatial
frequency. Shape patterns of higher spatial frequency
can be translated within some of the patterns without
changing the value of fields.

2. Sampling of regions for feature extraction (see section
3.3) randomizes the spatial phase of the regions with
respect to underlying patterns, increasing the probability
of finding matches.

2.4 Query Formation and Search
In the simplest search scenario, the user specifies a defect target
by selecting a region on the design and the design layers of
interest. Shapes are cut to the region boundary and run through the

Figure 2. Walsh Patterns and Intersection.

See text for explanation.

Walsh pattern feature extraction process, resulting in a feature
vector. The target vector and database of features for each
<layer, Walsh pattern> tuple i in the d-dimensional vector are read
from storage and a euclidean distance computation is performed
between the database subset (i.e. feature columns) corresponding
to the selected layers:

!

eucdist = (ti "vi)
2

i=1

d

Other distance functions may be used, and have advantages for
particular distributions, sensitivities to outliers, etc. During search,
it is possible and in some cases helpful to use a weight multiplier
on each term to emphasize certain aspects of the pattern. One
may weight one layer more heavily, or emphasize high or low
spatial frequencies preferentially, resulting in a better search for a
particular target.

The results of the distance to each vector are sorted, and the user
specifies a number of bins to return and the number of match
results in each bin. An optional “fuzz” factor controls the number
of retrieved matches. In our prototype, the center coordinates of
the matching regions are returned, and the same layout editor used
to form the query is used to step through the matching windows.

For some real world problems, the simple search performance has
proven adequate. In a recent production example, a database of
500K feature vectors sampled from a large (18 mm x 18mm in .13
µ CMOS) ASIC was searched in under 3 minutes. The defect in
this case required a relatively large search region of 9.6 sq.
microns resulting in a modest database, with only 2 layers (32
features).

2.5 Clustering and clustered search
In a more complex but higher performance search scenario, one or
more clusterings are performed offline on the feature vector
database.

Clustering is a fundamental data analysis step that has been
widely studied across multiple disciplines for over 40 years
[7,8,9]. It has been successfully used in many exploratory
pattern-analysis, grouping, decision-making, and machine-
learning situations, including data mining, information retrieval,
image segmentation, and pattern classification. It is sometimes
referred to by alternative terminology, such as unsupervised
classification, unsupervised learning, and segmentation, in
different communities.

The general objective of a clustering problem is to discover
coherent groups of similar data objects. In our application the
result of each clustering is a set of representative vectors for
patterns on some vertically adjacent subset of layer and an index
set with the association of feature vectors to each cluster center.
Normally adjacent pairs or triples of layers are clustered in a
moving window fashion (i.e. M1+M2, M2+M3,M3+M4…).
Several clustering methods have been examined, including k-
means (km), balanced k-means (bkm), self-organizing map
(som), neural gas (ng), and scalable versions of k-means and
neural gas (skm, sng).

After clustering, the search process proceeds according to the
following pseudocode. Again, the user specifies three search
parameters: a fuzz factor for how distant the matches may be, the
number of bins i to be examined, and the number of entries j to
examine from each bin.

1. generate one or more target feature vectors (including
translated or mirrored variants of pattern if desired).

2. for each target feature vector {
 choose cluster set corresponding to selected levels
 compute n = fuzz * baselineReturnSet
 choose n nearest clusters according to distance measure
 retrieve feature vectors for all n matching clusters
 compute distance measure to each retrieved vector
 sort return set by distance measure
 divide return set into i bins\
 return top j entries in each bin
 }

Cluster based search can be very fast for feature databases of
many gigabytes, since distance comparisons are initially
performed for only cluster centers, then later for the returned set;
thus the entire database need not be read from disk for in-memory
computations. We have implemented a scalable k-means
algorithm which should be able to handle clustering of datasets
limited only by mass storage capacity, though the quality or utility
of searching such large databases is still to be determined.

3. RESULTS
In this section we report numerical results which were used to
evaluate design choices and make course corrections during the
first generation prototype.

3.1 Comparison of Feature Quality
As mentioned earlier, the raw intersection area is used in some
function to create features for each level. In this section we
describe some of the functions and a methodology for quantifying
their effectiveness.

Let

!

Atot be the total area of shapes in a layout region of interest,

!

Aw be the total area covered by each Walsh pattern,

!

Ai be the
area of intersection of the “on” areas of Walsh pattern i with
layout, and

!

Ai be the intersection with off areas. Intersection
functions used, in order of increasing computational cost, have
included:

1.

!

Ai
2.

!

Ai /Atot

3.

!

(Ai " Ai) /Aw

4.

!

(Ai " Ai) /Atot
5.

!

Ai(Ai " Ai) /Atot
Due to the low spatial frequency of the patterns, each of these has
some set of non-unique shape sets which will map to the same
feature value for any one Walsh pattern, but not for all. Thus
each is potentially viable, and the increasing computational cost
must be measured. In order to assess the additional value for
more complex but discriminatory functions, a study of
correlations between feature dimensions was performed.
Correlation coefficients between features can be used to measure
feature redundancy. Let

!

vi be the vector of feature dimension i,

!

v j the vector of feature dimension j. Both vectors are of length N,

which is the number of data points, and

!

vi(n) represents the i-th
dimension of the n-th data point.

Let

!

v i =
1
N

vi
n=1

N

" (n)

 be the average value of feature

!

vi(n) .

The correlation coefficient between

!

vi and

!

v j is defined as

!

corrcoef (vi,v j) =
cov(vi ,v j)

std(vi)• std(v j)

where

!

cov(v i,v j) =
1
N

(vi
n
" (n) # vi(n))(v j(n) #v j(n))

is the covariance between

!

vi and

!

v j , and

!

std(vi) = cov(vi ,vi)

is the standard deviation of

!

vi . The correlation coefficient is
within range [-1, 1]. A value of 1 means that

!

vi and

!

v j are
100% correlated. A value of -1 means 100% anti-correlated. A
value of 0 means there is no correlation between

!

vi and

!

v j .

 We use an average (absolute) correlation coefficient (ACC) to
measure the average correlation between all pairs of feature
dimensions.

Table 1. Cross Correlation between Feature Pairs

Reg .16 0.5883 RegHQ.16 0.0498

Reg .8 0.5608 RegHQ.8 0.0281

Reg. 4 0.5195 RegHQ.4 0.0316

Reg. 2 0.4750 RegHQ.2 0.0426

Reg.1 0.4661 RegHQ.1 0.0351

Table 1 shows cross correlation for various window sizes for two
area functions corresponding to simply intersection area (1) and
the higher quality difference filter (3). This study was performed
on a large register file completely tiled with regions. 16 Walsh
patterns were used with two layout layers, resulting in 32 feature
dimensions.

 It is evident that the improved Walsh features have much less
correlation between the 32 feature dimensions, thus should
contain more information. It is not clear at this point, however,
whether or not more information leads to better clustering or
search results for defective patterns.

3.2 Comparison of Clustering Methods
A study of the effectiveness of various clustering methods was
performed on a large macro with diverse layout regions (floating
point register file), during the first generation prototype when only
small designs could be handled.

The clustering results on the register file layout data were
collected for 5 different scales (16, 8, 4, 2, 1). The results for scale
2 (2 track x 2 track region) are shown in Table 2; the best
algorithms, highlighted in bold are common across all scales. The
number of feature vectors

!

" 560K and the number of clusters
was fixed at 1000, i.e. 500 feature vectors/cluster. The objective
function used is the mean-squared error

!

MSE =
1
N

x " ux
x
2

where

!

ux is the mean vector of the cluster to which x is assigned.
The time recorded is purely clustering time (not including I/O
time) on an IBM 397 (160 Mhz Power2) workstation.

Table 2. Clustering results for scale 2 (2 x 2 tracks)

 MSE Time (min)

km 2.0001 110

bkm Not avail. Not avail.

ng 0.403 1579

som 1.552 59

skm 2.421 54

sng 6.414 1540

From the results, it is evident that the Neural-Gas algorithm
always delivers the smallest MSE and the scalable k-means
algorithm always runs the fastest. The blank entries for bkm
(balanced k-means) are due to running out of memory on a 32 bit
workstation; in general this algorithm is worst in runtime and
memory, but the balanced property is desirable for search when
the distribution of data is highly skewed (i.e. concentrated in
subspaces). We have compiled 64 bit versions of these algorithms
and plan to collect more results on larger datasets with more
diverse shape patterns, but at the time of the clustering study such
data was not available.
For the search application, it will always be necessary to examine
many nearby clusters since the best match may not reside in the
cluster closest to the target. Given this fact, it is probably not
necessary to minimize the MSE measure, but to choose an
algorithm balancing runtime vs. error. The SOM algorithm,
which was used in our first prototype phase, seems to fare better
as the size of dataset grows (e.g., it has better MSE but runs as
fast as scalable k-means).

3.3 Runtime and Memory Using Sampling
Sampling was identified as a requirement early in the design
stages. For technology nodes in volume production such as .13 µ,
fully covering the design with 1 track wide windows on an 18
mm side die would result in over 2 x 109 regions; ideally one
would like to use overlapping windows, quadrupling that data
volume. Each window would require storage for 16 features per
layer, with as many as 20 layers potentially of interest counting

vias. Even at 1 byte per field the storage requirements will
become prohibitive for future technology nodes. Typical designs
contain a great deal of redundancy in patterns, making sampling a
reasonable strategy. Our current implementation uses sample
densities ranging from 0.5% to 5% depending on the scale of
regions, technology node, and die size.

Some example runtimes and feature database sizes are given in
Table 3. The CPU times are for an S85 (600 MHz PowerPC)
server with 100 Gbytes of real storage. Sample densities were
adjusted to manage memory use with other production jobs. These
runs do not reflect any use of SMP, though the underlying Niagara
DRC system supports SMP processing and recent trials using
SMP exhibit nearly linear speedup in number of processors with
only about 50% increase in peak memory.

Table 3. Memory and Storage for 2 layer feature extraction

Design Trks
/region

Samp.
Dens.

CPU
Hrs/min

Peak
mem. Samples

PPC750 16 5% 1:15 400 M 27K

PPC750 4 1% 3:30 1.10G 271K.

PPC750 1 1% 12:39 8.44G 8.44M

Power5 4 0.5% 82:00 17.2G 4.37M

4. DISCUSSION
While the use of the existing DRC infrastructure has allowed
rapid progress and produced a tool which shows promise for
production use, the complexity of operations required is beyond
the design point of existing DRC engines. Ideally, adaptive
sampling would be performed rather than the random sampling.
Samples which are already represented and do not add new
information to the database would be rejected. This would require
that DRC operation be interleaved with the clustering process or
some similar computation comparing the accumulating database
with candidate samples.

Othere applications of geometry search apart from defect
characterization which preclude sampling. For example, it might
be necessary to apply some manual or automated correction
process to the design when process based solutions cannot be
found for some defect. In this case, all instances of the defect or
similar patterns must be found. To avoid storing features for all
regions, it would again be desirable to interleave distance and
clustering operations with DRC operations. Such intelligent
search is beyond the historic scope of tasks envisioned for DRC
engines, and requires a more flexible architecture and
programming tools.

5. CONCLUSION
The key underlying concepts introduced in this paper are treating
design configurations as pattern spaces, and translating regions of
layout to points in such a pattern space. These concepts are
anticipated to have other applications in yield enhancement and
development of advanced processes. The geometric search engine
for defect analysis is the first of several applications in the area of
yield engineering and design for manufacturability.

We have demonstrated feasibility of a pattern recognition based
approach to search and analysis of systematic defect patterns
known as swamps. The system is currently being tested on real
production line problems at full chip scales and evaluated for
further development.

The introduction of effective pattern recognition capability into
the yield engineer’s toolkit will provide several benefits:

• The requirement for hand coded searches for each
defect under analysis will be reduced. This should
result in both a cost and turn-around time reduction.

• By avoiding the introduction of technology node
specific constants in DRC code, it should be possible to
search for a fail structure and context in a different
technology.

• Today, there is no automated, quantitative capability to
perform the comparison stage of the extended “search
on similarity then compare for differences” process that
the engineer engages in.

The capability to identify the coordinates of matches and quantify
similarity to a failure provides the base for further integration with
in-line analysis data and tools.

6. ACKNOWLEDGMENTS
William Leipold recognized the applicability of pattern
recognition techniques to manufacturing and layout resolution
problems. Paul Bassett put the right people in touch to initiate this
project. Mark Lavin, Bob Sayah and Young Kim provided
essential consultation in the use of Niagara DRC tools.

7. REFERENCES
[1] Maynard, D., Bergman Reuter, B. Rosner, R. Swampfinder,

Proc. Advanced Semiconductor Manufacturing Conf. 2001,
(Munich, April 2001), 151-155.

[2] Maynard, D.N., Bergman Reuter B., Patrik, J. A. . A
Manufacturing Perspective of Physical Design
Characterization. in Proc. Advanced Semiconductor
Manufacturing Conf. 2002 (Boston, May 2002), 240-246.

[3] Walsh, J. L. A Closed Set of Normal Orthogonal Functions.
Amer. J. Math. 45 , 1923, 5-24.

[4] Beauchamp, K. G. Walsh Functions and Their Applications.
London: Academic Press, 1975.

[5] Optican, L. M., and Richmond, B. J. Temporal encoding of
two-dimensional patterns by single units in primate inferior
temporal cortex. III. Information theoretic analysis. J.
Neurophysiol. 57, 1987, 162-178.

[6] Hedayat, A. and Wallis, W. D. Hadamard Matrices and
Their Applications. Ann. Stat. 6, 1978, 1184-1238.

[7] Hartigan, J.A. Clustering Algorithms. Wiley, New York,
1975.

[8] Jain, A.K, and Dubes, C. Agorithms for Clustering Data
.Prentice Hall, New Jersey, 1988.

[9] Zhong, S. Probabilistic Model-based Clustering of Complex
Data. Dissertation. Dept. of ECE, U. Texas at Austin, 2003.

.

