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ABSTRACT 
We describe a method for identifying layout regions in one or 
more designs ranked by similarity to layout implicated in 
systematic defects.   Defect engineers examine these regions in 
hardware for presence of defects to analyze the cause of the 
failure.   Feature extraction  based on intersection filters with 
orthonormal basis patterns is performed offline at many possible 
defect scales.     

Categories and Subject Descriptors 
T5.5  [Design for yield  robustness, design-to-manufacturing 
interface]: . 

General Terms 
Algorithms, Design 

Keywords 
Defect analysis, systematic defects, design rule checking, pattern 
recognition, pattern spaces 

1. INTRODUCTION 
Systematic defects in a semiconductor process are those defects 
which are not a result of particles interfering with the exposure or 
other process steps during manufacturing; instead, they are 
associated with optical, chemical, or mechanical process 
sensitivity to specific shape configurations. Yield engineers face a 
difficult task in identifying the cause of such defects,  which 
exhibit correlations between design shape configurations and 
reduced process tolerance (i.e. the acceptable range of variation in 
process parameters).  Contemporary semiconductor processes 
employ resolution enhancement techniques, like optical proximity 
correction (OPC), to compensate for shape deforming influences 
of neighboring shape features.  This and other rocessing methods 
such as chemical-mechanical polishing (CMP) exhibit defects for 

which  the root cause involves the interaction of a particular local 
pattern with the shapes in its context.  The same pattern (layout 
shape) which results in a deterministic fail (or is not robust to 
process variations) in a particular part may not fail in other 
locations on the same design, or on a different design due to 
differences in context. 

The problem faced by the engineers encountering such a failure 
can be formulated, in part, as a search task.  The engineer first 
needs to find regions of interest with a pattern that is similar to 
some (possibly unknown) aspect of the pattern causing the defect.  
Ultimately,  the coordinates of a set of such similar patterns is 
used to monitor the same part or other parts in manufacturing to 
see whether systematic failures, or distortion of the shapes which 
might be defects with process variations, occur in those patterns 
as well.   

The second part of the engineer’s task is to ascertain what is 
different about the similar but non-failing patterns, or what is in 
common among the failing patterns.   Corrective action can then 
be taken, either in the form of process adjustments or updated 
design rules. 

This paper describes the defect analysis problem and reports  
results of an approach to providing automated pattern recognition 
capability leveraging existing design rule checking tools.  
Detailed introductions to pattern recognition and data mining 
techniques are precluded by length constraints, but referenced 
throughout the text. 

2. BACKGROUND AND METHODS  
In this section we describe the characteristics and constraints of 
the problem as described by manufacturing engineers, and 
introduce terminology.  We then outline the basic methods 
developed to date, problems with the previous approach, and the 
basic methods developed to apply pattern recognition techniques 
built on the existing tool infrastructure.  

2.1 Problem Characteristics 
The systematic defects of concern usually result in shorts,  opens, 
or high resistance line thinning on single layers, but their root 
cause may involve shapes in a larger context.  The  exact scale of 
the defect shapes themselves may vary, as well as the scale of the 
relevant context which affects the shape.  While the most common 
cases involves interactions between shapes on one or two layers, 
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defects involving specific  patterns on up to four layers have been 
observed. 

 While the most common scenario is to search for similar patterns 
in the same design, patterns similar to the defect may also exist in 
other technology nodes. Thus, search techniques should be 
independent of the detailed dimensions of the target (failing) 
pattern.  

This combination of multi-scale shapes on several layers has been 
referred to as swamps. To support process engineers analyzing 
such swamps, a system  known as Swampfinder [1,2] has been 
deployed.  That system requires that a unique design rule 
checking (DRC) screen is written to encode a working hypotheses 
of the defect configuration.  By screen,  we mean that the result of 
the computation has a binary pass/fail value. The returned shape 
configurations which pass the screen are turned into bitmaps and 
formatted as a web page for engineers to examine. There are 
several problems with this method: 

1. It is labor intensive, requiring scarce design rule 
checking DRC coding resources devoted to every defect 
under analysis. 

2. The checks resulting in “target matches” (similar 
patterns) must be precisely specified, while the exact 
relevant ranges of spacing or width values and 
especially contextual information are often not clearly 
known. 

3. The check may return too many target matches. To 
address this, random selection among matches can be 
made. However, the random selections may not be 
representative, and may not effectively sample the space 
of patterns.   Process engineers need to see the worst 
case examples to learn the process window tolerance.  

4. It is iterative but not incremental.  When the process 
engineer receives the results of this query, it may be 
obvious that a slightly refined search was necessary. 
However, the loading of the data into efficient search 
structures is generally lost and a new batch search must 
be executed, resulting in a long delay. 

5. There is no measure of distance from match to defect 
pattern.  Process engineers would like to examine a 
range of increasingly dissimilar patterns, if possible, to 
ascertain what aspects of the pattern cause the fail. 

6. Finally, the DRC screen must often run on full chip 
data, entailing long runtimes (possibly multiple days 
even on multiprocessing servers). Defect patterns often 
occur in wiring layers or at the interface of wiring and 
device layers, making exploitation of hierarchy difficult. 

Work commenced on a replacement system known as Fuzzy 
Swampfinder in 2002, with two generations of prototypes 
created. The system overcomes many of the problems 
described above by adapting techniques common in other 
domains such as multimedia search.  Rather than writing 
specific screens for each defect, a generic feature extraction 
can be performed on the design offline, prior to defect 
discovery. The resulting databases for the smallest defects 
(i.e. single device shapes) may be quite large (many 
gigabytes).  In the second generation prototype, we have 
introduced region sampling techniques to allow control over 
the amount of data collected.  

To accelerate the search process for the largest offline 
generated feature databases, the system design and 
prototypes have used clustering and index methods.  

 A schematic of the staged system design is shown in Figure 
1.    Prototype work to date has addressed the components of 
the first stage only.  Given a successful design, more direct 
interfaces to manufacturing imaging and analysis tools may 
be introduced to facilitate the workflow of process engineers. 

 

The remainder of section 2 describes the stage one 
components - feature extraction , clustering, and search 
methods - in more detail.  

2.2 Feature Extraction  
Many pattern recognition methods and descriptors have been 
developed for various classes of data including shapes and 
images.  Two major families are structural and statistical pattern 
recognition.  Both generally rely on decomposition of the input 
data into features.  For the requirement of ordering matches by 
distance from the target, the statistical approach  was chosen as 
more straighforward.  Each configuration of shapes can be 
considered as a point in a pattern space, with distances in the 
space computed by standard methods. 
VLSI layout on a single layer can be considered as binary image.  
However, the data is universally stored in a geometric vector 
description, with rasterization performed by layout editors and at 
final mask generation.  While many feature extraction methods on 
images are known,  it was desired to avoid the cost of 
rasterization; also the processing demands of most image based 
methods on fine-grained images of layout would be prohibitive 
and possibly unnecessary. Each pixel would have to be on the 
order of minimum design steps, since designers have flexibility to 
create shape borders with fine steps as long as minimum shape 
widths are exceeded, and specific shapes may be a source of 
lithography related defects. Instead, we have adapted the ideas of 
transform methods on images to work in the geometric data.  

The Walsh Transform [3,4] is a well known method for 
decomposing signals or images into coefficients of an 
orthonormal basis,  by measuring the energy of each component 
in an image; this can be considered a “square wave basis ” version 
of the Fourier transform.  Our method is to create two dimensional 
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Figure 1. Schematic of  Pattern Recognition Based 
Defect Analysis Flow 

 



Walsh patterns [5] and to perform intersections of target and 
search layout regions with a full orthogonal set of such patterns, 
scaled to match a standard set of target region sizes.  The set of  N  
2-dimensional patterns are formed by creating matrix H, a 

Hadamard matrix [6] of  dimension 

! 

N " N then to apply the 
following procedure: 

Rotate H by –90 to produce matrix had_h 
Rotate H by 180 to produce matrix had_v 
To produce  i-th pattern Wi { 
h’=Replicate each row of had_h to  dimension of H 
 v’= Replicate each column of had_v to  dimension of H 
Wi = Multiply the h’ and v’ matrices elementwise 
} 

The matrix Wi now consists of values 1, -1, with +1 
corresponding to the on (shape) regions and –1 as off (no shape).  
The “tiles”created from contiguous blocks in the pattern  (see Fig. 
2, upper region) are scaled to fit the desired defect region of 
interest height and width. These patterns are intersected with 
shapes in regions on each layer; the regions may completely cover 
the layout in a regular tiling, or may consist of sample regions 
randomly distributed over the layout.  In Fig. 2, the layout shapes 
are intersected with the white regions of the shown tiled Walsh 
pattern; the remaining shapes after intersection with on tiles are 
shown on the lower right.  The area of the intersected shapes over 
the entire region is the basic quantity constituting each field in a 
feature vector.  Several functions the intersection area and other 
derived area have been tested as described in section 3.1 

Some simple function of the intersection area is then stored as a 
numerical value; (functions are described in section 3.1).  Each 
design layer of interest is stored as subset of the vector.   A vector 
has dimension d = l * w, where l is the number of layers and w the 
number of  Walsh patterns used.  A feature database consists of N 
vectors, one for each region.   

Since the spatial resolution of individual tiles in the patterns is 
greater than the minimum line position, the resulting vector is 
lossy and cannot recover the original shapes.  By increasing the 
order of Walsh functions or replicating and scaling, we can trade 
off processing time and storage against feature extraction quality. 

In the prototype we have used 16 Walsh patterns shown in Figure 
2.  These were initially formed as 4x4 tiles.  Later, to increase the 
spatial resolution the underlying matrix was replicated and halved 
in spatial scale resulting in 8x8 tiles.  This increases the spatial 
frequency, while reducing positional information.  For arbitrary 
spatial configurations this would be of no benefit, but layout 
configurations are restricted by minimum width and spacing 
constraints and the imperative for design density.  Both the 
subjective match quality and quantitative measures of clustering 
error (i.e. the measure in section 3.2) indicate that the high 
frequency 8x8 patterns produce better results for target shape 
configurations tested to date. 

Walsh patterns are generated at several scales, and each scale is 
run on each layer of interest in the offline processing step. The 
scales are defined in a technology independent fashion, in terms 
of minimum wire pitch on the finest pitch layer for the 
technology. This supports a requirement to be able to search for 
defects in different technologies.  DRC code and the 
corresponding Walsh patterns are synthesized for a particular 
technology from parameterized scripts.   

In principle the regions need not be square, though in the 
prototype this has been the case. Walsh patterns may be 
synthesized at the time of target formation to match any aspect 
ratio, but require another batch feature extraction for non-standard 
aspect ratios. 

In the second prototype stage, sampling of regions was introduced 
to reduce the data volume.  Regions of the desired scale are 
generated at random locations; cells containing Walsh patterns are 
merged to those locations and intersections performed.  The 
[institution] DRC system Niagara includes a “throw defect” 
feature originally developed for critical area analysis that was 
useful in this computation.  Another feature known as chaining is 
critical for the correct operation of the sampling subsystem.  
Chaining modifies the default iteration character of the DRC 
engine to apply a sequence of operations on a shape by shape 
basis and accumulate the results for each shape, rather than the 
default behavior of applying shape operations to all shapes on a 
level.  By using region boundaries and chaining we are able to 
implement the desired intersection filters, and to avoid storage 
costs of intermediate shape results. 

2.3 Translation Invariance 
The recognition of geometric transformations (translation, rotation 
in the plane) is always an issue in shape or image recognition.  In 
the current system there are three aspects of the overall design 
which attempt to ameliorate the problem of recognizing translated 
or rotated variants. 

1. The Walsh patterns are of relatively low spatial 
frequency.  Shape patterns of higher spatial frequency 
can be translated within some of the patterns without 
changing the value of fields. 

2. Sampling of regions for feature extraction (see section 
3.3) randomizes the spatial phase of the regions with 
respect to underlying patterns, increasing the probability 
of finding matches. 

2.4 Query Formation and Search 
In the simplest search scenario, the user specifies a defect target 
by selecting a region on the design and the design layers of 
interest. Shapes are cut to the region boundary and run through the 

 
Figure 2.    Walsh Patterns and Intersection.   

See text for  explanation.  



Walsh pattern feature extraction process, resulting in a feature 
vector.  The  target vector  and database of features for each 
<layer, Walsh pattern> tuple i in the d-dimensional vector are read 
from storage and a euclidean distance computation is performed 
between the database subset (i.e. feature columns) corresponding 
to the selected layers: 

! 

eucdist = ( ti "vi)
2

i=1

d

#  

Other  distance functions may be used, and have advantages for 
particular distributions, sensitivities to outliers, etc. During search, 
it is possible and in some cases helpful to use a weight multiplier 
on each term to emphasize certain aspects of the pattern.  One 
may weight one layer more heavily, or emphasize high or low 
spatial frequencies preferentially, resulting in a better search for a 
particular target.  

The results of the distance to each vector are sorted, and the user 
specifies a number of bins to return and the number of match 
results in each bin.  An optional “fuzz” factor controls the number 
of retrieved matches.  In our prototype, the center coordinates of 
the matching regions are returned, and the same layout editor used 
to form the query is used to step through the matching windows. 

For some real world problems, the simple search performance has 
proven adequate. In a recent production example, a database of 
500K feature vectors sampled from a large (18 mm x 18mm in .13 
µ CMOS ) ASIC was searched in under 3 minutes.  The defect in 
this case required a relatively large search region of  9.6 sq. 
microns resulting in a modest database, with only 2 layers (32 
features).  

2.5 Clustering and clustered search 
In a more complex but higher performance search scenario, one or 
more clusterings are performed offline on the feature vector 
database.   

Clustering is a fundamental data analysis step that has been 
widely studied across multiple disciplines for over 40 years 
[7,8,9].  It has been successfully used in many exploratory 
pattern-analysis, grouping, decision-making, and machine-
learning situations, including data mining, information retrieval, 
image segmentation, and pattern classification.  It is sometimes 
referred to by alternative terminology, such as unsupervised 
classification, unsupervised learning, and segmentation, in 
different communities. 

The general objective of a clustering problem is to discover 
coherent groups of similar data objects.  In our application the 
result of each clustering is a set of representative vectors for 
patterns on some vertically adjacent subset of layer and an index 
set with the association of feature vectors to each cluster center.  
Normally adjacent pairs or triples of layers are clustered in a 
moving window fashion (i.e. M1+M2, M2+M3,M3+M4…). 
Several clustering methods have been examined, including k-
means (km), balanced k-means (bkm),  self-organizing map 
(som), neural gas (ng), and scalable versions of k-means and 
neural gas (skm, sng). 

After clustering, the search process proceeds according to the 
following pseudocode. Again, the user specifies three search 
parameters: a  fuzz factor for how distant the matches may be, the 
number of bins i to be examined, and the number of entries j to 
examine from each bin.  

1. generate one or more target feature vectors (including 
translated or mirrored variants of pattern if desired). 
 

2. for each target feature vector { 
     choose cluster set corresponding to selected levels 
     compute n = fuzz *  baselineReturnSet 
     choose n nearest clusters according to distance measure  
     retrieve feature vectors for all n matching clusters 
     compute distance measure to each retrieved vector 
     sort return set by distance measure 
     divide return set into i bins\ 
     return top j entries in each bin 
   } 
 
Cluster based search can be very fast for feature databases of 
many gigabytes, since distance comparisons are initially 
performed for only cluster centers, then later for the returned set;  
thus the entire database need not be read from disk for in-memory 
computations. We have implemented a scalable k-means 
algorithm which should be able to handle clustering of datasets 
limited only by mass storage capacity, though the quality or utility 
of searching such large databases is still to be determined. 

3. RESULTS 
In this section we report numerical results which were used to 
evaluate design choices and make course corrections during the 
first generation prototype.  

3.1 Comparison of Feature Quality 
As mentioned earlier, the raw intersection area is used in some 
function to create features for each level.  In this section we 
describe some of the functions and a methodology for quantifying 
their effectiveness. 

Let 

! 

Atot  be the total area of shapes in a layout region of interest,  

! 

Aw  be the total area covered by each Walsh pattern, 

! 

Ai  be the 
area of intersection of the “on”  areas of Walsh pattern  i with 
layout, and 

! 

Ai  be the intersection with off areas.  Intersection 
functions used, in order of increasing computational cost, have 
included: 

1. 

! 

Ai  
2. 

! 

Ai /Atot  

3. 

! 

(Ai " Ai) /Aw  

4. 

! 

(Ai " Ai) /Atot  
5. 

! 

Ai(Ai " Ai) /Atot  
Due to the low spatial frequency of the patterns, each of these has 
some set of non-unique shape sets which will map to the same 
feature value for any one Walsh  pattern, but not for all.  Thus 
each is potentially viable, and the increasing computational cost 
must be measured.  In order to assess the additional value for 
more complex but discriminatory functions, a study of 
correlations between feature dimensions was performed.  
Correlation coefficients between features can be used to measure 
feature redundancy. Let 

! 

vi  be the vector of feature dimension i, 

! 

v j  the vector of feature dimension j. Both vectors are of length N, 



which is the number of data points, and 

! 

vi(n) represents the i-th 
dimension of the n-th data point. 
 
Let 

! 

v i =
1
N

vi
n=1

N

" (n)  

 

 be the average value of feature 

! 

vi(n) . 

The correlation coefficient between 

! 

vi  and 

! 

v j  is defined as 

! 

corrcoef (vi,v j ) =
cov(vi ,v j)

std(vi)• std(v j)
 

where 

! 

cov(v i,v j ) =
1
N

(vi
n
" (n) # vi(n))(v j(n) #v j(n))  

is the covariance between 

! 

vi  and 

! 

v j  , and 

! 

std(vi) = cov( vi ,vi)  

is the standard deviation of 

! 

vi . The correlation coefficient is 
within range [-1, 1].  A value of 1 means that 

! 

vi  and 

! 

v j   are 
100% correlated.  A value of -1 means 100% anti-correlated. A 
value of 0 means there is no correlation between 

! 

vi  and 

! 

v j .  

   We use an average (absolute) correlation coefficient (ACC) to 
measure the average correlation between all pairs of feature 
dimensions. 

Table 1. Cross Correlation  between Feature Pairs 

Reg .16 0.5883  RegHQ.16 0.0498  

Reg .8 0.5608  RegHQ.8 0.0281  

Reg. 4  0.5195  RegHQ.4 0.0316  

Reg. 2 0.4750  RegHQ.2 0.0426  

Reg.1 0.4661  RegHQ.1 0.0351 

 
Table 1 shows cross correlation for various window sizes for two 
area functions corresponding to simply intersection area (1) and 
the higher quality difference filter (3).  This study was performed 
on a large register file completely tiled with regions.  16 Walsh 
patterns were used with two layout layers, resulting in 32 feature 
dimensions. 
 

 It is evident that the improved Walsh features have much less 
correlation between the 32 feature dimensions, thus should 
contain more information. It is not clear at this point, however, 
whether or not  more information  leads to better clustering or  
search results for defective patterns. 

3.2 Comparison of Clustering Methods 
A study of the effectiveness of various clustering methods was 
performed on a large macro with diverse layout regions (floating 
point register file), during the first generation prototype when only 
small designs could be handled.  

The  clustering results on the register file layout data were 
collected for 5 different scales (16, 8, 4, 2, 1). The results for scale 
2  (2 track x 2 track region) are shown in Table 2; the best 
algorithms, highlighted in bold are common across all scales.  The 
number of feature vectors 

! 

" 560K and the number of clusters 
was fixed at 1000, i.e. 500 feature vectors/cluster.  The objective 
function used is the mean-squared error 

! 

MSE =
1
N

x " ux
x
# 2

 

where 

! 

ux  is the mean vector of the cluster to which x is assigned.  
The time recorded is purely clustering time (not including I/O 
time) on an IBM 397 (160 Mhz Power2 ) workstation. 

Table 2. Clustering  results  for   scale 2  (2 x 2 tracks) 

 MSE Time (min) 

km 2.0001 110 

bkm Not avail. Not avail. 

ng 0.403 1579 

som 1.552 59 

skm 2.421 54 

sng 6.414 1540 

 
From the results, it is evident that the Neural-Gas algorithm 
always delivers the smallest MSE and the scalable k-means 
algorithm always runs the fastest. The blank entries for bkm 
(balanced k-means) are due to running out of memory on a 32 bit 
workstation; in general this algorithm is worst in runtime and 
memory, but the balanced property is desirable for search when 
the distribution of data is highly skewed (i.e. concentrated in 
subspaces).  We have compiled 64 bit versions of these algorithms 
and plan to collect more results on larger datasets with more 
diverse shape patterns, but at the time of the clustering study such 
data was not available. 
For the search application, it will always be necessary to examine 
many nearby clusters since the best match may not reside in the 
cluster closest to the target.   Given this fact, it is probably not 
necessary to minimize the MSE measure, but to choose an 
algorithm balancing runtime vs. error.  The SOM algorithm, 
which was used in our first prototype phase, seems to fare better 
as the size of dataset grows (e.g., it has better MSE but runs as 
fast as scalable k-means). 

3.3 Runtime and Memory Using Sampling 
Sampling was identified as a requirement early in the design 
stages.  For technology nodes in volume production such as .13 µ, 
fully covering the design with 1 track wide windows on  an 18 
mm  side die would result in over 2 x 109 regions; ideally one 
would like to use overlapping windows, quadrupling that data 
volume.  Each window would require storage for 16 features per 
layer,  with as many as 20 layers potentially of interest counting 



vias.  Even at 1 byte per field the storage requirements will 
become prohibitive for future technology nodes. Typical designs 
contain a great deal of redundancy in patterns, making sampling a 
reasonable strategy.  Our current implementation uses sample 
densities ranging from 0.5% to 5%  depending on the scale of 
regions, technology node, and die size.   

Some example runtimes and feature database sizes are given in 
Table 3.  The  CPU times are for an S85 (600 MHz  PowerPC) 
server with 100 Gbytes of real storage. Sample densities were 
adjusted to manage memory use with other production jobs. These 
runs do not reflect any use of SMP, though the underlying Niagara 
DRC system supports SMP processing and recent trials using 
SMP exhibit nearly linear speedup in number of processors with 
only about 50% increase in peak memory. 

 
Table 3. Memory and Storage for 2 layer  feature extraction 

Design   Trks 
/region 

Samp. 
Dens. 

CPU   
Hrs/min 

Peak  
mem. Samples 

PPC750 16 5% 1:15 400 M 27K 

PPC750 4 1% 3:30 1.10G 271K. 

PPC750 1 1% 12:39 8.44G 8.44M 

Power5 4 0.5%  82:00 17.2G 4.37M 
 

4. DISCUSSION 
While the use of the existing DRC infrastructure has allowed 
rapid progress and produced a tool which shows promise for 
production use, the complexity of operations required is beyond 
the design point of existing DRC engines. Ideally, adaptive 
sampling would be performed rather than the random sampling.  
Samples which are already represented and do not add new 
information to the database would be rejected.  This would require 
that DRC operation be interleaved with the clustering process or 
some similar computation comparing the accumulating database 
with candidate samples.   

Othere applications of geometry search apart from defect 
characterization which preclude sampling.  For example, it might 
be necessary to apply some manual or automated correction 
process to the design when process based solutions cannot be 
found for some defect.  In this case, all instances of the defect or 
similar patterns must be found. To avoid storing features for all 
regions, it would again be desirable to interleave distance and 
clustering operations with DRC operations.  Such intelligent 
search is beyond the historic scope of tasks envisioned for DRC 
engines, and requires a more flexible architecture and 
programming tools. 

5. CONCLUSION 
The key underlying concepts introduced in this paper are treating 
design configurations as pattern spaces, and translating regions  of 
layout to points in such a pattern space.  These concepts are 
anticipated to have other applications in yield enhancement and 
development of advanced processes. The geometric search engine 
for defect analysis is the first of several applications in the area of 
yield engineering and design for manufacturability. 

We have demonstrated feasibility of a pattern recognition based 
approach to search and analysis of systematic defect patterns 
known as swamps.  The system is currently being tested on real 
production line problems at full chip scales and evaluated for 
further development. 

The introduction of effective pattern recognition capability into 
the yield engineer’s toolkit will provide several benefits: 

• The requirement for hand coded searches for each 
defect under analysis will be reduced.  This should 
result in both a cost and turn-around time reduction. 

• By avoiding the introduction of technology node 
specific constants in DRC code, it  should be possible to 
search for a fail structure and context in a different 
technology.  

• Today, there is no automated, quantitative capability to 
perform the comparison stage of the extended “search 
on similarity then compare for differences” process that 
the engineer engages in. 

The capability to identify the coordinates of matches and quantify 
similarity to a failure provides the base for further integration with 
in-line analysis data and tools. 
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