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Shape similarity, categorization and recognition of objects from outline shapes
are addressed with a time varying coupled logistic map lattice trained by a genetic
algorithm. Synchronization and spatial cooperation are key underlying principles, thus
the network is designated a synchronization opponent cooperative
activity (Soca) network. The computations are described in terms of well known
frameworks — the dynamical recognizer and probabilistic finite state automata.

The network orders curve exemplars of parameterized curves by constructing a
partition cell metric space, in which partitions of the network’s dynamical phase space
are considered as dimensions and the occupancy of all partitions locates an in the
representation space. This statistical population representation contrasts with many
connectionist representation spaces, in which dimensions capturing statistics of the
modeled world are bound to individual output or internal nodes, even in a distributed
representation. The latter style -local or place coding - remains the most widespread
assumption in neuroscience and connectionism, but is increasing questioned by the
neuroscience community.

Next I study a family of such networks acting as classifiers for paperclip objects
rotated in depth. Recognition rates up to 85% are obtained for a set of 20 objects. The
approach builds on the theory of view based recognition, but posits an alternative
spatiotemporal computation and population code whose computation serves to combine
local features (binding), capture local structural relationships, and handle view
invariance.

The work raises principled issues in biological computation. It departs from
previous recurrent networks and high dimensional chaotic networks by introducing two
stages with sharp parameter changes, rather than stationary or smoothly changing
dynamics. It is hypothesized that slow wave dynamics and oscillations observed in
inferotemporal cortex are signatures of such a recognition process. Extensive
neuroscience review, justification of the CML formulation via lower level models, and
discussion of experiments to discriminate various hypotheses are included.
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Chapter 1: Introduction

Classifying object shapes and identifying the category of a known or previously
unseen shape most similar to a prototype are fundamental tasks in computer vision.
Successful solution of these tasks is a prerequisite for higher levels of object and scene
analysis in still images, and for object tracking in video sequences. Research into the
problem is increasingly motivated by new applications in content-based retrieval for
image, trademark, and video databases, in addition to traditional industrial inspection,
biomedical, and target identification applications. In multimedia applications, it is often
particularly important to conform to the human judgments of similarity, and to have a
representation which can be matched with efficient computations.

While such practical interests are one driving force, the questions of similarity
and object identification are of intrinsic interest from a psychological and
neurophysiological standpoint as well; distinct perspectives on these problems have
evolved within these disciplines, and will be given considerable space here.
Computational and signal processing concepts have often informed these fields, framing
the nature of experiments and interpretations of results.

In this thesis, the related problems of similarity and stimulus equivalence are
addressed through a method involving the construction of a metric space by partial
synchronization of states, under the twin influence of the intrinsic dynamics of the
oscillators and of the shapes presented as initial conditions. The current form of the
system is a hybrid of algorithmic processing for learning and recognition, with the
construction of the space and the resulting recognition algorithm using a regular lattice of
chaotic oscillating units with a local mean field coupling.

MARR’S PROGRAM IN VISUAL NEUROSCIENCE

Because the visual system has been studied most intensely, the mutual influence
of theory and experiment in that realm has dominated thinking about neural mechanisms
and sensory problem solving. Marr described three levels ! of abstraction for the study of
vision (Marr 1982) . The lowest level is the mechanism level, concerned with details of
what the physical elements of the brain (or computer are doing). Historically, neurons
have been taken as the elementary units of interest. The next level is algorithmic: a
description of the process controlling the hardware. Finally, the highest level is the
computational level, in which the problem should be understood in terms of information
processing: what is being computed, why, and what are the appropriate models for these
operations?

Marr produced such a computational theory for object recognition, in which
information is reorganized by flowing through a series of parallel and serial modules or
processing stages. The raw, two dimensional array of image intensity first goes through a

' The outline of Marr’s work here follows closely the synopsis in (Yuille and Ullman 1990).
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process of edge-detection to produce an intermediate representation known as the primal
sketch. This representation undergoes further processing to produce a viewer centered

representation (the 2% — D sketch), Finally, an objected centered 3-D representation is

computed, describing the objects in terms of volumetric primitives. Low level vision is
concerned solely with the first two levels; interpreting and recognizing an object from a
sketch is generally considered as high level vision. The notion of object centered
representations has proven controversial; I will examine the controversy in some detail.
In this thesis, I have adopted the viewer-centered approach.

Because the Marr program is especially influential and successful in replicating
the types of function thought to be performed in low level vision, many researchers have
tried to extend it to high level vision, but chiefly using the assumptions concerning
mechanisms adopted from low level vision. These mechanisms are chiefly a “front end”
of filters employing rate coding, with “back ends” consisting of specific arrangements of
excitatory and inhibitory neurons, doing the work of the algorithms within a
computational module. While the general framework remains valid, the role of detailed
structural arrangements of individual neurons will be questioned in this thesis.

I will now present an overview of the problem - the computational analysis - and
a brief treatment of the mechanism or implementation level.

SITUATING SIMILARITY AND OBJECT RECOGNITION

The over-arching problem chosen for study here is similarity, with a particular
focus on similarity of curves and silhouettes. By silhouettes, I mean two dimensional
projections of three dimensional objects, with all shading data removed. These binary
images are essentially closed curves in the plane, with the enclosed region filled in.
Considering curves, the similarity problem can be simply but generally formulated as:

Given planar, non-self-intersecting closed curves C1 and C2:

Define a distance function d(C1,C2) which returns a scalar value
indicating their distance in some high dimensional space.

This formulation allows for geometric approaches relying on knowledge of
explicit coordinates, as well as approaches which operate on the instantiation of the
curves in an image. These approaches will vary according to various criteria for
effectiveness, for sensitivity to noise and distortions, and with regard to plausibility as
biological models.

In both machine vision and the psychological study of similarity, it has been
common to construct a metric space and to embed objects as points in the space. The
distance function defined above can then be computed as standard Euclidean distance, or
by a variety of more sophisticated weighted distance functions. Non-metric methods of
assessing similarity exist as well, and will be briefly mentioned; these emerged chiefly in
psychology, in response to evidence that many aspects of similarity in cognitive and
perceptual phenomena may not be metric.



Similarity is seen by cognitive science and psychology of vision as tightly linked
to segregation and grouping processes in visual scene analysis, to identifying objects seen
from different viewpoints, and to categorization. Thus, it underlies nearly all higher level
cognitive phenomena regarding our processing of the visual world. In everyday life we
spontaneously identify objects, and create categories from the diverse retinal images of
an object seen from different viewpoints, or from the diverse individual members of a
species. However, this fundamental problem of stimulus identity has only recently begun
to be addressed satisfactorily in computer vision. While many geometric methods have
been developed for handling translation and rotation in the plane ((Simoncelli, Freeman
et al. 1992); ((Wolfson and Yehezkel 1992), rotation in depth of diverse objects has been
addressed most recently and successfully through statistical approaches with a rich
feature space (Mel 1997), and by an ensemble of radial basis function neural networks
implementing a view normalization and interpolation strategy (Edelman 1999).

RESTRICTIONS ON THE PROBLEM SPACE

For exploring, the power of a class of dynamical networks on problems of
similarity and stimulus invariance, I have chosen data limited to isolated outline objects
(silhouettes), i.e. binary images in the plane. I do not address more general problems of
segmentation and scene analysis; clearly extensions to this method and extensive
preprocessing would be required to account for those aspects of visual processing.

The approaches just mentioned developed by Edelman and Mel for object
recognition also use isolated objects, but include shape, shading and (in Mel’s
SEEMORE system) color. These additional cues may increase the performance of those
algorithms, which have not been tested on silhouettes. Humans clearly can recognize
common objects from outline information only (Hayward 1998), and the focus in this
thesis has been on that domain.

Nevertheless, including shading data would allow discrimination of certain
objects from views which occlude (hide) parts of their own structure. With silhouettes
only, it would be impossible to discriminate a round ball from a clarinet seen looking
directly down the bell, for example. Shading information would allow the convex and
concave nature of the two objects to be discriminated. I do attempt to handle objects
which present radically different views; the following figure illustrates an extreme view
of one of the test objects in a family of recognition experiments.



Fig. 1. Two views of the same paperclip object, illustrating the extreme nature
of the distortion due to rotation in depth. The left view is the 0°, the right view is
+90°. Base images provided by Michael Tarr, Psychology Dept., Brown
University.

In many object recognition studies, the performance of images degraded with
noise and with distortions such as scrambling or occlusion is examined.
Examining performance in the presence of image noise is particularly important for a
complete scene analysis system attempting noise sensitive processes such as
segmentation.

At the time of writing, the approach here has not been tested with noise
degradation, and I will assume segmentation is handled by pre-processing which must be
noise tolerant and ideally has some noise suppression ability.

AN OVERVIEW OF THE METHODS

The use of a metric representation on a space of extracted features, or on higher-
order features discovered by a learning process, is one of the oldest methods in machine
vision, and in pattern recognition in general. The method developed here is novel in that
the dimensions of the space are derived from phase space partition cells of a dynamical
system?. Stated differently, the representation or encoding is based on the statistics of the
total network state in the constructed space, without reference to the individual nodes in
the network. This is in contrast to most connectionist representation spaces, where the
dimensions of the space capturing the statistics of the modeled world are bound to
individual nodes, whether these are internal or output nodes whose values constitute a
code. The linkage of representation dimensions to nodes is referred to as localist or place
coding and remains the most widespread assumption in neuroscience and neural network
theory.

2 This is translated roughly as non-overlapping intervals in the set of possible real valued states,
with each node in a network having a state in only one such interval.

4



The present system and network model assumes an alternative spatio-temporal
population code, and achieves some functional computing properties which help to
overcome classical dilemmas in pattern recognition. Issues of combining local features
(binding), capturing structural relationships at slightly larger scales, and handling view
invariance can be addressed simultaneously by the spatio-temporal interactions that occur
during learning and recognition in this system.

In addition, the work raises principled issues of computation in biological
systems. While rooted in theory of recurrent networks, chaos, and complexity (high
dimensional coupled chaotic systems), it makes some substantive departures from
previous work in these fields. The most important is that it introduces two stages with a
sharp change in the parameters, rather than stationary or smoothly changing dynamics.
By some definitions, this precludes its consideration as a dynamical system altogether
and certainly makes any analysis based on continuous mathematics more difficult.

The present work also breaks with typical practice in recurrent networks by
concentrating on the transient regime of dynamics rather than on equilibrium states (i.e.
attractors) of the network. In other words, the network is measured and finishes its work
prior to reaching any stable asymptotic state. This staged processing, with
desynchronization and partial synchronization of transient trajectories is designated as a
Synchronization Opponent Cooperative Activity (Soca) network.

To date the study of high dimensional, spatially coupled nonlinear systems is
chiefly experimental, with the experiments conducted by numerical simulation. Given
this fact, there is little existing theory to build rigorous proofs of the system’s capability,
bounds on performance, or expectations on memory capacity and scaling. The most
relevant recent theoretical developments are presented briefly, though none are directly
applicable in their present form. The present study, like the bulk of spatially-extended
network studies, is exclusively computational in nature.

OPERATIONS AND ARCHITECTURES FOR COOPERATIVE NEURAL
COMPUTATION: AN OVERVIEW

The application of the Turing scheme to describe neural computation in a
real brain is not completely obvious ... Where is the program in the brain? And
what is a memory? If a program exists, its mere definition will, in my view, be a
revolutionary step toward the understanding of brain function. The mere
demonstration of the existence of a program is beyond what seems imaginable.
And all we have are noisy neurons and unreliable synapses. (Amit 1995)

For the purposes of this introduction, let us note two observable properties of a
chaotic system. It is a deterministic system charactized by some scalar or vector state S
which
1. exhibits an aperiodic time evolution (called its orbit or trajectory)

2. exhibits exponentially rapid divergence over time for nearby initial conditions.



We can model such systems with differential equations or difference equations.
Using difference equations, chaotic behavior can be generated with a one dimensional
system — a system with a single state variable. Such a system, with a single time varying
state variable, can be considered as a simple model of an oscillator.

If we want to compute similarity of inputs based on the state values of a system
observed at some later time ¢, chaos seems to be the very opposite of what we want. Only
early in the evolution of a chaotic system, in the transient stage, is there reliable
correlation between the input and the state of the evolving system.

We can construct higher dimensional systems by connecting two or more such
systems as nodes in a network. At every time step, an averaging function results in
mutual influence of the state values, counteracting the divergent tendencies of chaotic
dynamics. This coupled high dimensional system behaves quite differently; depending
on the “strength” of chaos and coupling, the connected oscillators may synchronize in an
aperiodic or periodic mode.

In this case, there are rather intricate dependencies in the approach to
synchronization on the specific spatial form of the input to the system. The basic
intuition underlying this thesis was the idea that by exploiting these two opposing
tendencies, of divergence and synchronization, a high dimensional system may
effectively compute a representation suitable for use as a distance function.

Since an important goal of this thesis is to extend and solidify the connections
between high dimensional nonlinear dynamics, computational approaches to pattern
recognition, and biological networks, it is necessary to understand developments in
several fields which have motivated the approach taken. The relationship between arrays
of chaotic network elements, programs and neurons would seem even less obvious than
the relationship of programs and neurons.

I will argue that a more diverse, and ultimately clearer, picture of neural
computation is emerging from theoretical areas such as synchronization dynamics of
ensembles of coupled chaotic elements, and the field of symbolic dynamics which bridges
classical computing concepts (symbols and formal languages) with dynamical systems
theory. I will also argue that a wealth of experimental evidence in neurophysiology
supports this view, even though (with a few exceptions) this has not been the
interpretation framework used by experimentalists working on synchronization dynamics
3

This style of computation differs from the classical connectionist models,
including attractor neural networks, in at least one significant way. The structure
supporting the computation is implicit in the graph corresponding to the flow of states,
when a particular partitioning (coarse graining) of the state space of network elements is
chosen. This state flow graph must adapt to both the statistics of the sampled world of
patterns, and must also support a cooperative transformation of the input, such as the
normalization function developed here in the context of solving the stimulus equivalence

3 There is some evidence that this is changing. W. Singer, a well known investigator of
synchronized oscillations, stresses that aperiodic oscillations may be synchronized in a recent
review. The work of Hampel and Sompelinsky, reviewed later, is an outstanding exception.
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version of the similarity problem. Some similarity of this computational structure to
Markov chains and decision processes is apparent, but again the present emphasis on
changes in the dynamical parameters precludes an obvious mapping of techniques from
that field, which chiefly models random processes with stationary probability transitions
between states.

It could be argued that the statement highlighted above is too strong; recurrent
network architectures in general do their work through complex state flows controlled by
weights. However, these still depend on fine structure of weights and specific connection
topologies, while the networks studied here do their work with homogenous local
connections between units in a single layer.

With this iterative computation style and corresponding implicit state flow
graphs, networks with few (i.e. 6) parameters yield effective computations for a
perceptual task. These parameters are spatially homogenous across a spatially regular,
locally connected network, rather than requiring a specific topology of connections and
weights fed by feature detectors. These parameters correspond to average parameters of
micro-circuit component systems tolerating a great deal of randomness in structure and
noise in their local, neuron level operation, because computation is carried out by
hierarchies of oscillating sub-populations.

This is not to say that classical ideas of receptor fields, and of neural coding and
computation mediated by single cell rates are unimportant, as they are relatively simple
and predict the responses of superficial neurons to simple stimuli. However, in the
emerging view, these classical concepts interface with more dynamically complex
computational systems, functioning in part by rapid coordination between cortical regions
and between cortical and sub-cortical areas. In sensory pathways, these simplest
computational stages may act as perturbations to higher level computational systems
supporting segmentation, object recognition, and attended search functions. In motor
systems they serve as final actuators to the muscular systems, driven by complex
dynamical pattern processes in pre-motor systems.

Still, even the classical concepts are being questioned and revised, based on a
variety of evidence which I will review in some detail. Omitting citations for the
moment, the evidence pointing to a revision of classical ideas on neural signaling and
computation includes:

1. Modulations of response profiles from natural stimuli, including areas outside
classical receptive field.

2. Multi-channel spike rate and field potential studies indicating a role for temporal
synchrony and modulations in synchrony.

3. A changing role for dendritic action from passive conductance to an active role in
processing, related to complex spike arrival time processing and synchrony.

4. Interactions between local fields (electrotonic coupling) and dendritic processing,
again related to spike arrival time processing and synchrony.

5. Indications that the same neurons perform different functional roles in stages as the
time course of perception unfolds.

One way to view the historical interactions between experimental neuroscience
and neural network theory is to consider that ideas about the elementary operations

7



computed by neurons condition ideas about network architectures, which in turn
condition experimental approaches. For example, in the history of neural modeling,
neurons were first considered as binary threshold units, combined into networks
functioning as boolean logic systems. Experimentally observed excitatory and inhibitory
synapses, along with the connectionist concepts of weights, advanced the neuron level
computation model to support a variety of architectural approaches, shifting the
architectural dialog towards signal processing, and to the mapping of learned
environmental regularities to representations or behaviors. Competitive principles came
to play a large role in network architectures.

The new operations conceived here derive from a research stream rooted in
experimental and theoretical biology of neuron populations*. Small microcircuit models
(Chapeau-Blondeau and Chauvet 1992), small living neural circuits maintained on a
silicon electrode array (Kowalski, Albert et al. 1992) and living sub-networks in awake
behaving animals (Freeman 2000) have all been demonstrated to show complex, time-
varying population firing activity. Observation in living systems and detailed modeling
of increasing scales of populations can result first in synchrony, then eventually chaos (by
coupling synchronous excitatory and inhibitory sub-populations with incommensurable
frequencies).

Perhaps finally (but awaiting explicit experimental confirmation) sequences of
desynchronization and partial synchronization emerge as “populations of populations”
are coupled, mediated by slower waves or impulses of activity from spatially separate
regions which serve to modify dynamical parameters. The idea that slow wave rhythms
in the brain act as a kind of clock was proposed long ago by Wiener (Wiener 1985), but a
clock was conceived of as a kind of “gating” operator on signals as in digital logic. An
alternative view expressed here is that such rhythms act as a clock controlling
synchronization operators by modulating bifurcations in a nonlinear system’
Synchronization and clustering operations can implement competitive interactions, but
their hallmark is cooperative effects, resulting from the interaction of spatially organized
input with the geometry implicit in the dynamics. Binding of disparate sensory features
into a unified code which preserves compositionality — the ability to recognize sub-parts
— is an important possibility for these new primitive operators. The binding problem has
so far eluded a satisfying solution by localist, rate coded feature combination hierarchies
(i.e. gnostic or grandmother cells), and by feed-forward and attractor networks, due to the
compositionality issue. This issue will be taken up in a later chapter in some detail.

These new synchronization operators and the corresponding strategies for coding
and computation operate in 16 iterations or less, an upper bound chosen to correspond to
plausible biological recognition times (assuming certain spatial and temporal scales of
neural computation). Simulations described in this thesis, and by other investigators,
indicate that rapid synchronization can occur with coupled discrete oscillators. Emerging

4 While there is a literature on chaos in single neuron responses, I will not discuss it here.

3 Baird earlier argued that discrete time clocking dynamics in cortical assemblies establish (fast)
entrainment and (slower) bifurcation frame rates, with Hebbian learning occurring during the
latter.



theories on ensemble density evolution in chaotic systems and on parameter lower
bounds guaranteeing synchronization may provide a deeper mathematical explanation for
the time course of transients and synchronization, and will be introduced briefly.

In addition to the present work demonstrating that rapid synchronization of
transient responses governed by chaotic dynamics has applications in shape recognition,
many investigators have been exploring similar systems for the related vision tasks of
segmentation and grouping. The generality of the computational strategy with
chaotically evolving fields of coupled state variables, suggests that such dynamics and
conceptual approaches, while originally suggested for large scale “mass action *“ models,
may also apply to smaller networks. The state variables in large scale models may be
ensemble average firing probabilities or spike rates, while in microcircuit models
(where each node represents a single cell) the state variable can be mapped to spike firing
phase relative to some reference slow cycle, for example, resulting in local phase
distributions which can rapidly perform computations. In the rest of the thesis, I will
adopt the convention of discussing firing rates, but the flexibility of these principles is a
rather important point.

Historically, pioneering researchers in psychology and neuroscience have
emphasized the differences between dynamical approaches and computational or
symbolic approaches. I will be more conciliatory, following the lead of a research
community sometimes termed “physics of information”, which examines dynamical
systems as information processing systems, often using the tools of symbolic dynamics to
bridge these domains.

ORGANIZATION OF THE THESIS

The organization of the thesis reflects several goals beyond the description of a
pattern recognition algorithm, chiefly the grounding in psychology, neurobiology and the
justification of the coupled map approach as an appropriate technique in computational
neuroscience.

In this introductory chapter and continuing in the next, I describe the selected
problem of similarity and pattern recognition, emphasizing well-known dilemmas which
are negotiated in the present study with a combination of novel approaches and existing
methods.

Chapter 2 reviews psychological and computer vision approaches to the issues of
similarity, as well as reviewing a selected set of algorithmic approaches to shape
recognition. These algorithms were chosen for review from the vast literature on the
basis of recency and some family resemblance to the present method. Finally, a section
on pure computer science theory relating dynamical systems to pattern classification is
raised in this context.

Chapter 3 reviews some neurophysiology and systems neuroscience which is
especially relevant to the systems approach followed here. The emphasis is on recent
findings and controversies over the role of single neurons versus larger assemblies in
coding and computational tasks. Further, I explore the possible nature of computations in
such assemblies and at various scales of organization.



Chapter 4 will more systematically introduce the required dynamical concepts.
Since this dynamical framework at first appears remote from conventional neural
network modeling, I discuss dynamics in the context of larger scale networks and the
concepts of macrostate or ensemble variables. Some work of other investigators in
dynamical networks is reviewed, emphasizing the visual task of segmentation where most
previous work in oscillations has been focused.

Chapter 5 discusses representation and learning. I begin with some discussion of
how I approach the problems of similarity and stimulus equivalence with this dynamical
framework, then proceed to computation and framing the learning problem.

The dynamical complexity of recurrent, spatially extended systems poses
challenges for analytical determination of network parameters, though some recent
progress on related issues was described in Chapter 4. As a result, in order to construct
network dynamics, the evolutionary computing® paradigm is used to construct networks.
The emphasis on this study is more on dynamics than on learning per se, so the treatment
of this aspect of the work is brief.

Chapter 6 describes the computational experiments undertaken. First I describe a
variety of simple but novel studies of transients and convergence in single maps, pairs of
coupled maps, and lattices with random or simple algebraic initial conditions. Most of
these studies examine system responses over multiple parameter and stimulus
dimensions, with 3-D animations of the system state versus a parameter plane produced
as a result. These animations are provided as an internet based supplement.

Next, I describe a family of experiments involving the construction of a quasi-
metric space which serves to order a family of parametric curves. The motivation for
using this toy problem is that these visual forms can be unambiguously ordered in a way
that maps naturally to their perceptual appearance. This is rarely the case for natural
objects. The resulting family of images for a curve, considered as distortions of a
canonical image, also resemble distortions due to scaling and rotation in depth of a single
object.

Finally, an extensive family of experiments on recognizing the equivalence of
different views of objects rotated in depth is described. This problem is formulated in
two ways to follow experimental paradigms used by other researchers; one is a database
search problem, with a second set following a psychological paradigm of determining
whether two successive presentations are the same object or different. The paperclip
images and variants used here have been used in both psychophysics and neural
recordings, proving challenging to monkey and human subjects, with error rates ranging
from 30% to chance depending on training circumstances, indicating that the problem is
non-trivial. For the stimulus equivalence problem, the objective function used during
evolutionary computation involves separate terms to achieve a balance between
clustering different views of an object and avoiding the mapping of views with similar
local statistics to the same region in the representation space. The concepts of

6 While the term genetic algorithm is more widely used, some authors (e.g. J. Pollack) restrict that
term to bitwise parameter encoding and mutation which is blind to “gene” boundaries, with
evolutionary computing subsuming both blind mutations and gene-boundary-aware mutations.
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regularization or normalization and cross-entropy are introduced. The results of the
hybrid (network and algorithmic) system are compared with two other state of the art
computational approaches.

Chapter 7 is devoted to discussion, future work and conclusions. I highlight
some of the limitations of the study and system, suggesting possible improvements from
the standpoint of both engineering and biological plausibility. I revisit competing theories
of biological coding briefly, and provide a new interpretation and computational role for
synchronous observations and modulations of synchrony (rate correlation) seen in multi-
channel neuron experiments, and suggest neurophysiological and computational work.
Finally, I summarize the main contributions and conclusions of the thesis.

Appendices are included introducing several technical topics: formal language
theory, signal processing, and Markov chains.
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Chapter 2: Similarity and Object Recognition

This section critically surveys historical and recent work related to the topic, with
the aim of situating the present theory in various ongoing dialogs related to effective
pattern recognition and the nature of biological perception. Given the heavy interactions
between these disciplines, the assignments are perhaps somewhat arbitrary, but are
simply intended to reflect the organization of the literature. Similarly, occasional
references to other disciplines or technical topics covered in depth in later sections seem
to be inevitable; it is hoped that the reader will exercise patience, and expect that such
material will be approached again in a later section.

PERSPECTIVES FROM PSYCHOLOGY

The wealth of data from functional brain imaging has presented challenges to
cognitive psychology and artificial intelligence, which for their first decade or so could
presume that there might be universally effective algorithms in a given domain of
perception or cognition. Given the distributed nature of processing revealed by imaging,
a rough consensus exists across psychology and neuroscience that, for any given domain
of cognitive and neural processing, diverse mechanisms come into play depending on the
exact nature of the task faced by the organism. Cognitive processing is attributable to
moment to moment shifting between large-scale brain states that interact with and control
diverse linkages of distributed and local processing networks, not simply a sequential
flow of information through static modules. Thus there is no universal processing flow
for perception which is independent of the time course of the information presented, nor
from the task context in which a perceptual act is embedded. This is stated only to
reinforce the appreciation that such changes in the nature of the task may induce a
different cognitive or neural network architecture, subtle changes to the task may change
the picture considerably.

To be concrete, much of the literature on visual recognition discussed below is
focused on rather contrived conditions of matching objects presented briefly in sequence.
This task differs from a natural ecological embedding condition, involving access of short
or long-term memory representations of objects with some meaning to the organism, and
searching for them in a natural scene. Thus observations at the levels of psychophysics
and neural activity may give only limited insight into other modes of object recognition.
For match-no match tasks on rapidly presented objects, preattentive neural dynamics,
which can rapidly make discriminations with minimal involvement from more complex
representations, are likely to dominate. The psychological meaning of similarity in such
a task setting and in the context of object recognition, will differ from other classic work,
such as Gestalt era studies of similarity (Goldmeier 1972). In the latter, subjects make
choices at their leisure between various drawings; their judgements shed light on
perceptual issues of the interaction and dominance of aspects of form such as orientation,
size, and spacing on grouping processes. Whether the same processes come into play in
very rapid recognition process is an open question, but most of the computational
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procedures to be examined here do not focus on issues of grouping, or other areas of
figural processing which includes phenomena such as length distortions, illusory contours
and size distortion illusions.

Similarity and Metric Spaces

Similarity plays a fundamental role in theories of knowledge and behavior. It
serves as an organizing principle by which individuals classify objects, form concepts,
and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological
theory. It underlies the accounts of stimulus and response generalization in learning, it is
employed to explain errors in memory and pattern recognition, and it is central to the
analysis of connotative meaning

Similarity has a long history in mathematical psychology, with two major
branches: set-theoretic and geometric. The emphasis in the present work is on geometric
similarity. In this formulation, objects are identified with points in a space, with
categories corresponding to volumes in the space. The dimensions of the space are
identified with primitive features in the input space. Similarity is conceived of as
proximity, and a space which supports a distance function or metric is a metric space.

Three properties serve to define a distance function as a metric:

1. The identity property asserts that an object should be most similar to itself.

2. The symmetry property asserts that the order of presentation should not affect

the measure.

3. Finally, triangle inequality should be satisfied; two dissimilar shapes should

not both be similar to a third.

While these properties must be satisfied to conform to the mathematical
definition of a metric, it is less clear that they are relevant to human perceptual processes.
Symmetry, in particular, does not hold; but examples where it fails are most readily
drawn from the realm of semantic or conceptual constructs (Tversky 1977). To better
model semantic information and the symmetry violations, Tversky proposed a set-
theoretic framework which counts shared features and independent features to produce a
quantitative similarity measure, but dispenses with the notion that the set properties need
to be “dimensionalized” .

Proponents of prototype based categorization for shapes have argued that this
asymmetry is due to the fact that prominent features of a shape in memory establish it as
a prototype, and the absence of this feature can quickly be detected. Edelman (Edelman
1999) argues further that the critique of metric similarity at verbal and conceptual levels
is of limited relevance in the assessment of geometric objects, where the objects can be
decomposed into objective primitives. The same assessment was made by Tversky and
Hutchinson (Tversky and Hutchinson 1986), stressing that this is particularly true when
physical stimuli involve a small number of dimensions. When a larger number of feature
dimensions is involved, metric models become problematic and the set-theoretic
alternative performs better. Uttal, in a review of similarity and categorization, stresses
that the boundary between perceptual and semantic representations may hinge on the
number of dimensions (Uttal 1988).
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The metric space concept was enhanced by the addition of a local density factor
by Krumansl (Krumhansl 1978), in a way that compensates for some of the weakness
noted by Tversky. In this formulation, the distance between objects is modified by the
number of nearby neighbors in the space so as to increase distances in densely populated
areas.

Measuring Similarity Experimentally

How can perceptual similarity be measured in a psychophysical setting? A
variety of methods have been developed.

When subjects are asked to perform tasks, three major methods of experimentally
assessing the perceived similarity or similarity of representation are seen in the literature.
Reaction time (also called judgement time) are measured, but in some cases short reaction
times are interpreted as a sign of similar internal representation (Bower and Clapper
1989), while others interpret long reaction time as confusability (Mumford 1989). Error
rates, particularly false positives or confusions, are often interpreted as indicators of
stimuli sharing similar representations. A final method is to measure interference, which
is essentially reaction times or error rate effects of attending to, ignoring, or holding in
working working memory multiple stimuli.

Levels Of Categorization and Object Recognition

Similarity, in the broad context of category formation and object recognition, is
normally framed in a discussion of the properties or features constituting a category.
Seen broadly, several problems must be solved for effective and flexible object
recognition’  (Tarr 2000). One is the multilevel nature of categories. Very broad
distinctions suitable for concise representation, naming and rapid recognition define the
basic level of categories (Rosch 1975). Subordinate level categories are more fine
grained and require more time for naming. The categories ‘birds’ and ‘humans’ are entry
level, while ‘blackbirds’ and ‘song sparrows’ are subordinate categories of bird. A
further level of categorization is the individual or exemplar level, where an individual
sparrow or human could be identified.

The term entry level refers to the level that is accessed first and typically named
when a subject encounters a familiar object. This is normally the basic level, but for
some categories (notably faces) the subordinate or individual level is the entry level; for
anomalous objects in a basic category, such as penguin among birds, the subordinate
level may be named.

Another related issue in recognition is the variability in viewing conditions for
objects. Objects may be obscured by other objects (occlusion), or parts of an object may

7 The categorization section follows Tarr’s review closely; the review provides a concise
statement of issues and recent work including some relevant imaging and single neuron studies,
but focuses on the structural vs. view based controversy to the exclusion of other important issues
such as visual search, and overlooks additional single and multi-neuron studies which will be
addressed in a subsequent section here.
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shield other parts from view (self-occlusion). For non-rigid objects, recognition must
account for variation in the configuration of parts. Viewpoint changes affect the retinal
image of an object; changes in size, position in the plane, and rotation in depth.

Categorization level interacts with object recognition, implying the likely
prospect of multiple subsystems. There is evidence that the ability to compensate for
viewpoint changes depends on the categorization level (Edelman 1995). Subordinate
level discriminations — those between very similar objects — increase the costs of
recognizing unfamiliar views.

Another form of interaction is that certain stimulus classes, notably faces, seem
to be interpreted chiefly at the subordinate level. There is a long history of claims of
specific face detector neurons (Rolls, Baylis et al. 1989). Sub-regions of inferotemporal
(IT) cortex, the putative cortical high-level pattern recognition area, were shown to be
more active during face recognition tasks (Sergent, Ohta et al. 1992). However, by
synthesizing a novel class of stimuli and intensely training subjects to make fine
discriminations between members of this class, Gauthier and Tarr (Gauthier and Tarr
1997) make a strong case for an alternative interpretation: that it is chiefly stimulus
expertise which results in a specific syndrome of configuration sensitivity and automatic
assumption of the subordinate level in recognition, rather than the specific stimulus
category. This may still be associated with specialized regions of IT cortex; the imaging
research of Gauthier and colleagues suggests that such localization does occur (Gauthier,
Anderson et al. 1997).

A final area of interaction between categorization levels and recognition involves
the type of representation or features used in recognition. Structural description theories
assume that view-independent or invariant features underlie the representation of objects,
and there is evidence that features such as the major axis of a 3-D shape are used to
make entry level categorizations. View based theories build representations from various
local features extracted from separate learned views, and have historically been
associated with the subordinate level. Advocates of view-based representations have
recently claimed that basic level categorization can emerge in a natural fashion from the
clustering involved in making subordinate level distinctions (Duvdevani-Bar and
Edelman 1999). These two strategies are considered in some detail in the next section.

View-Based and Structural Description Theories: Strategies for View
Independent Recognition

A growing body of experimental evidence now suggests that performance on
recognition tasks is proportional to the distance from the nearest familiar view. This
includes both error rate measures (Bulthoff and Edelman 1992) and recognition time
(Tarr and Pinker 1989); (Tarr, Bulthoff et al. 1997).

The structural approach derives essentially from the early proposal of Marr and
Nishihara (Marr and Nishihara 1978) that the ultimate task of object recognition is the
recovery of 3-D structural relationships from the 2-D retinal projection. If such a
structure could be derived, then recognition of the object would be largely viewpoint
independent. Faced with evidence that recognition is not invariant but varied linearly
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with distance from learned views for “paperclip” objects (Bulthoff and Edelman 1992),

the recognition by components (RBC) approach (Biederman and Gerhardstein 1993) was

refined to suggest that the maximal viewpoint invariance occurs when three conditions

hold:

1. Objects consist of geon-like parts. Geons are a set of simple volumetric components
which can be configured to produce a wide range of everyday objects.

2. These parts form qualitatively distinct configurations in different objects.

3. These parts are visible over the range of viewpoints for which invariant performance
should occur.

These predictions were tested by substituting a unique geon for one of the cylinders in the

chain, which resulted in nearly invariant performance. A subsequent study by Tarr and

colleagues (Tarr, Bulthoff et al. 1997) revealed that the single geon case is exceptional,

and generally performance falls off with distance from a learned view with three or five

geons. This ‘paperclip with added geons’ image set from the Tarr group (henceforth

denoted here as the paperclips+ set) was selected for study in the simulations described

later in this thesis.

In contrast to the experiments just described, in my simulations the original gray
scale images are reduced to silhouettes, reducing the 3-D information available by
shading and occlusion in the raw synthetic images. This is done chiefly to simulate
putative edge extraction mechanisms in early visual layers in an attempt to rely on form
alone. Another recent recognition study by Hayward (Hayward 1998) found no
significant difference in viewpoint-dependent performance between silhouettes and
shaded, part-boundary-visible versions of objects, indicating that features in the boundary
contour are largely responsible for recognition and changes in performance.

Network Implementations of View Interpolation

The view based approach has been developed extensively with feed-forward
neural networks, stemming from a general strategy first described by Poggio and
Edelman (Poggio and Edelman 1990). This strategy is essentially view interpolation by
regularization, or by normalization® in Tarr’s terminology (Hayward and Tarr 1997).
Normalization refers to the concept that different, perhaps novel views are mapped by
some computational process to a representation derived from the trained views. This
mapping occurs by transformation of several views of an object in a high dimensional
measurement space to a lower dimensional shape representation space. A learning
process operating over the presented views (e.g. the adjustment of network parameters)
ensures that the transformation approaches the same point in the representation space for
all trained views.

The dimensions of the measurement space correspond to an assembly of tuned
filters. This transformation occurs by approximating the statistics of activation and their
changes with basis function units (Poggio and Girosi 1990). The statistics are captured

81 will use the term normalization; regularization implies a certain underlying mathematical
approach is used (Poggio and Girosi 1990); a major result in the present work is to demonstrate an
alternative mathematical approach and network realization to accomplish the normalization.
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by the selection of centers and widths of Gaussian radial basis function (RBF) units and
weight values from each unit in the basis function unit to an output summing layer.

A more elaborate version of this approach is found in the Chorus system
(Duvdevani-Bar and Edelman 1999); (Edelman 1999). In Chorus, a set of prototype
objects is chosen as representative of a larger world of objects. The n prototypes are
drawn from a smaller number of categories. RBF classifiers for each of these prototype
objects are designed (trained). With advance knowledge of all the prototype objects,
optimal views for each can be chosen which achieve the best normalization (constant
activation of the classifiers for all views) as well as maximizing inter-cluster distances in
the space of all prototypes. Any known or novel objects applied to the measurement
units (200 tuned filters) map to a point in the representation space whose dimensions
correspond to each prototype. This point is signified by activation values on each
prototype unit.

Given this representation space, categorization can be performed by various
strategies. Nearest neighbor match chooses the category of the object with minimum
distance; another, k-nearest neighbors, examines the category of the k nearest neighbors
and selects the category based on majority vote.

Critique of the feed-forward view interpolation theory

Supporters of the view based stragegy generally attribute recognition time effects
to a normalization (i.e. orientation correction) process, similar to that assumed for mental
rotation processes. However, Chorus, a well knnown computational view-based model
with claims for biological relevance, does not actually predict any differences in reaction
time for the normalization process. The one-shot feed-forward flow through the network
is the same for any view presented to the network, whether novel or previously learned.
A previously proposed network, with a spreading activation architecture, had a more
natural interpretation for reaction time (Edelman and Weinshall 1991) . In general, some
form of iterative computation and competitive interactions progressing toward a decision
state have been invoked to explain reaction times in connectionist models, while more
abstract theories such as the diffusion model (Ratcliff, Van Zandt et al. 1999) claim to
explain response time distributions and differences in response distributions for error and
correct responses.

Nonlinearities in response time vs. distance from familiar views have been noted
by several investigators under certain testing conditions. Hayward and Tarr used a set of
qualitatively distinct single part geons previously used by Biederman and Gerhardstein
(Biederman and Gerhardstein 1993), but changed the experimental conditions to
eliminate possible opportunities to learn multiple views and exploit local diagnostic
features (Biederman and Gerhardstein 1993). They designed objects and training
viewpoints such that for = 45° rotations from the trained view, one direction resulted in
no qualitative changes, while the other produced qualitative changes, such as the
disappearance of areas of curvature. For these conditions, they found that response time
varied between quantitative and qualitative conditions (610 vs. 650 ms) and error rates
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also varied similarly (13.5 vs. 4.5 %). Hayward and Tarr conclude, then, that these
results contradict a normalization process based simply on magnitude of rotation.

The source of the well-established reaction time effect is arguably an artifact of
some matching process of stored codes and codes formed in the early visual pathways,
possibly involving synchronization processes. Based on these nonlinearities, Edelman
has argued that the mental rotation hypothesis has weak support based on the evidence
mentioned above, and that the disappearance or reduction of delay with practice
represents a faster path to recognition, not an increase in the rotation rate.

The subject of visual search and attention has to date been given relatively little
attention in the literature on view-based object recognition, but problems with the feed-
forward recognition model are also apparent in this context. It is easy for humans to
search a visual scene for a familiar object and to know that it is not there, but feed-
forward models do not readily address this case. Extensive experiments by Miyashita
indicate a repeatable, stimulus-specific response in anterior ventral IT cortex during a 16
second delay interval in a delayed match to sample task (Miyashita and Chang 1988).
The stimulus is not present during this interval, and the response is statistically
distinguished from the period when the stimulus is present. This is interpreted by
Miyashita as a neural correlate of short-term memory for the particular shape. A feed-
forward model considers the network weights to be the essence of memory, and predicts
no stimulus specific response during a delay period.

Single unit studies addressing attention and search aspects of object recognition
in IT cortex have led to considerably different interpretations of the functioning of IT
than those cited by Edelman and Tarr. These are described in more detail in a later
section, but for now I note the findings of Eskandar et al. (Eskandar, Optican et al. 1992)
that the best prediction of the stimulus from spike trains results from interpreting the
trains as a multiplication of a target code and the incoming stimulus code during a search
process. This could be interpreted as an intermediate computation (a weighting process)
in an RBF-style computation leading to activation in a certain area. Alternatively, it
might be interpreted as a cooperative synchronization process, also ultimately resulting in
activation in a few areas which are structurally and dynamically suited to synchronize
with the stored memory representation. The latter type of computation is the focus of the
theory and experiments here.

A final issue I raise regarding the neural correlates of psychological phenomena
was pointed out by Tsuda (Tsuda 1992), that of the difficulty of breaking the life of an
organism into clean epochs of learning and recognition. It seems likely that normal
exploratory behavior involves both of these activities proceeding in parallel, or at least
that a system is poised to be able to rapidly switch from one to the other as the dominant
mode. Dynamical models involving continual bifurcation (dynamical parameter
changes), but more explicitly recast in terms of synchronization dynamics, may be a more
appropriate architecture for combining learning and recognition in a natural way (Skarda
and Freeman 1987). The approach in this thesis, while consistent with oscillatory
representations and synchronization-based computational strategies, does not yet step up
to the challenge of dynamic shifting between learning and recognition modes.
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In summary, while view-based recognition has deservedly emerged as a leading
computational theory of object recognition and representation, several issues have not
been addressed: Primed search (search for an object held in short term memory in a
visual scene), variance in reaction times, and the longer time scale contextual shifts
between learning and recognition. While these issues are not addressed or resolved
theoretically or experimentally by the present work, we will return to these subjects in
discussing the relative merits of three recognition approaches with claims to biological
relevance.

PERSPECTIVES FROM COMPUTER VISION

Most contemporary work in the psychology of vision and perception uses
computational and signal processing concepts. The converse is not true, in that many
algorithms proposed for recognition have no ready interpretation in neural network terms.
In reviewing developments in computer vision most relevant to the present work, I will
first focus on a few classical dilemmas related to object recognition. I then review some
recent work claiming to be biologically motivated, and finally mention some recent
algorithmic approaches which share aspects of the computational style. In spite of the
emphasis here on dynamics and neuroscience, the synchronization opponent lattice
network also has something in common with recent trends in computer vision including
nonlinear diffusion, deformation, and feature histogram methods; thus it may be
improved by drawing on continued progress in those areas.

One algorithm (geometric hashing) is presented which may seem a bit out of
context with the rest of the discussion. I include it because it handles two problems —
invariance for discontinuous point sets and embedding of objects in a scene — which I do
not believe can be handled by any methods discussed here, including my own.

Classical Pattern Recognition in the Image Domain

Some attempt must be made to situate the present work in relation to the long and
diverse history of image recognition methods. To concisely present the history and
recent trends of such a vast field is challenging; I will emphasize the areas of
transformation and multiple scales that characterize recent geometric methods, and will
stress the way in which transformative methods can blur traditional distinctions between
structural and syntactic approaches and scale issues.

Several surveys on image processing methods identify the major classical
methods as either statistical or structural (Freeman 1985); (Leedham 1991); (Del Bimbo
1999). Del Bimbo describes more recent approaches as “shape through transformation”.
Thus classical recognition methods — both statistical and structural (or syntactic) — are
relatively passive, in that they do not modify the base image. They merely subject it to
some interpretive framework, such as a particular feature set. In contrast, my method
(and others I will survey) modifies the image in some way prior to measurement on a
modified image, or possibly measurements over a sequence of modifications.
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Classical Methods and Dilemmas

Statistical Methods

In statistical approaches, pattern data is represented by a feature vector which is
used as input to some classifier or decision process. Features may characterize global
form (area, elongatedness, major axis orientation) or local elements (corners,
characteristic points). Shapes are viewed as points in shape feature space. For effective
recognition, the requirement is to choose features such that patterns of the same class are
tightly clustered in N dimensional space corresponding to N features, and patterns of
different classes are in other tightly clustered regions well separated from each other
(Duda and Hart 1973).

A key problem in statistical methods is the reduction of the dimensionality of the
feature vector. This may be accomplished by a feature selection process, in which low
significance features are deleted, or by a feature space transformation method, or both.
Classically, a particular class was represented by a template with matching against
templates; this matching was considered to be intractable for large numbers of objects
due to the need to compare with inputs which have been rotated, scaled, partly occluded,
non-rigidly transformed, or presented under varying lighting conditions. Recent schemes
employing normalization (the RBF networks underlying Chorus) and interactions among
multiple well chosen prototypes, or the sophisticated weighting of a large feature set (Mel
1997) have overcome this to some extent.

Another approach to the use of features is to create a transformed representation
space on the basis of correlations among the dimensions to enhance cluster tightness and
inter-class separation. Feed-forward supervised networks, or competitive networks such
as self organizing maps can use feature vectors as input, and via training transform the
features into activation levels in a set of network elements corresponding to classes.

Decision methods may generally be classed as non-parametric or parametric
(Leedham 1991). Non-parametric methods include linear discriminant functions,
minimum distance classifiers, and nearest neighbor classifiers.

The most widely used parametric decision rule is the Bayes classifier. The main
distinction from non-parametric methods is that the decision rule involves class
conditional densities and a priori probabilities of occurrence of classes. Bayesian
classifiers are particularly important with large object databases, where setting classifier
decision boundaries properly and defining the optimal feature set are crucial for good
recognition performances.

The description of statistical pattern recognition methods presented here thus far
has been in general terms, applicable to any data set. Recognition of object shapes in a
statistical framework poses additional problems unique to this class of data. Non-rigid
objects are composed of parts which can assume different poses — human and animal
figures are good examples.

The changing projections of three dimensional objects seen from different
viewpoints constitute the stimulus identity problem. Different features and feature
conjunctions will be present in each view. This problem has been addressed by
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geometric methods seeking invariants (treated in the next section), or by neural networks
exploiting regularities in the changing distributions of raw features (the Chorus RBF
ensemble approach). Recently, however, progress on stimulus equivalence within a “raw
feature” paradigm has been demonstrated, by careful design.

Mel, describing the design goals for a recent high performance feature based
system (Mel 1997), notes the following expectations on feature sets to overcome these
problems:

1. Features should be large in number; sparsely occupied high dimensional
representations are most robust to noise.

2. Features should be useful; they may be sensitive to object quality (occlusion, poor
lighting) but should be robust in the face of pose or configuration changes.

3. They should be dominated by spatially local features; this is particularly important
for non-rigid objects , which preserve local but not global structure in any
particular view.

4. They should be driven by multiple visual cues to maximize discrimination,
represent diverse objects, and buffer representation against degradation which
affects different cues (feature channels) more or less severely.

The use of these principles led to the creation of his SEEMORE system, which
achieves recognition rates above 90% in a 100 object world, even for scrambled
images. The high performance achieved with these first order” feature channels is
interpreted by Mel to support the idea that a simple feature space is all that is needed
and attempts to extract structural information or otherwise “bind” collections of
features may be unnecessary for biological systems. It is easy, however, to construct
images with identical first order statistics which will fool such a system but are
readily distinguished by humans. It seems likely that some of SEEMORE’s
recognition success depends on diversity in first order statistics of the object world,
along with limited use of second order statistics for some feature channels.

Structural or Syntactic Methods

The other major family of classic pattern recognition approaches, chiefly
developed for image or shape processing applications are structural or syntactic methods
(Pavlidis 1977). Here, the input image must first be segmented into primitives; the
primitives must be recognized, and spatial or topological relationships between these
primitives extracted. Finally, with this information, a syntactic analysis and classification
on that basis can proceed. None of these problems are trivial.

Within computer vision, structural methods based on raw image data have been
largely superseded by related methods which capture structural information implicitly by
multi-scale representations or by deformations. In the psychological examination of
human vision, structural approaches still command a good deal of support. In part, this is

9 First order features implies that no information on the spatial proximity of other features is
present. Second order features would capture adjacencies of feature pairs at one or more scales,
with increasing high order features preserving this trend.
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due to the fact that task specific or language mediated descriptions of objects offer
evidence that compositional representations are used. Statistical approaches, and feed-
forward neural networks have been problematic in regard to this issue.

Compositionality is essentially the separability of the components of a composite
representation, i.e. the ability to use or talk about them independently after the formation
of that representation (Van Gelder 1990). Recurrent networks have been demonstrated to
exhibit a so called functional compositionality, in which tree structures can be
represented and their constituent parts derived (Pollack 1990).

Some Geometric Methods for Shape Description

Finding a representation of shapes which is invariant to viewpoint has been
approached from a variety of methods which are difficult to justify biologically.
However there is evidence that classes of stimuli, such as point sets in a regular
geometrical arrangement, are recognized even in a noisy background (Uttal 1988). It is
unlikely that other methods discussed here involving local receptive-field computations
(e.g. SEEMORE) would handle this situation well. The first geometric method to be
examined deals explicitly with point sets and is designed to work in scene analysis.

Geometric Hashing

Geometric hashing (Wolfson and Yehezkel 1992) was proposed as a means of
performing model based recognition in scenes, with robustness to partial occlusion and to
transformations in the plane. This is accomplished by considering an object as a point
set, and by remapping coordinates of every point in terms of all possible triplets of non-
collinear points. For four points A,B,C,D € R?, affine invariant coordinates of D are

coordinates with respect to axes defined by AB and AC. Affine transformations
(translation, scaling or rotation in the plane) will produce a new set of points
A',B',C',D'; the coordinates of D' inthe A’,B',C" coordinate system are unchanged.
First, signatures are generated from interest points on one or several views of an object.
Interest points are endpoints or intersections of segments extracted by some edge
extraction procedure. During scene analysis, interest points are selected and processed by
a similar computation. The signature generation procedure is outlined here:

procedure signature_generation
for each model object
extract m interest points for the object
for each ordered non-collinear triplet (affine basis) do
a) compute coordinates of all m-3 model points in the affine coordinate
frame for the current basis;
b) use the coordinate as an address to a hash table;
c) record in the table entry a pair {model, basis} for which the
coordinate was obtained
end for
end for

22



end procedure

The complexity of signature generation is of order m* per model. The creation of
the hash table is viewed as a learning process, in which a memory is formed
relative to different foci of attention.

The corresponding matching procedure is then:

procedure match_model_in_scene
a) extract n interest points from scene
b) choose arbitrary ordered triplet of non-collinear points, compute scene
points referenced to this triplet as affine basis.
c) for each such coordinate
check the appropriate entry in hash table;
for every {model, basis} pair , tally a vote for the model and affine
basis.
endfor
d) If a certain {model, basis} pair scores many votes, decide this is the
object.
e) Consider all {triplet, image point} pairs which voted for winning
{model, basis} pair
f) find the affine transformation giving the best least-squares match
between corresponding point pair views.
g) transform the whole low level representation of model according to affine
transform and verify it vs. the scene.
end procedure

Multiresolution Methods

One major problem with feature vector classifiers is that the relevant features of
an object tend to vary with scale in a way which is unknown a priori. Overcoming this
defect is a major goal of scale space approaches, such as geometry-driven diffusion.
While such methods can adaptively tune feature representations for shapes with detail at
many scales, the mapping of the resultant curve family to a representative feature vector
can be computationally expensive, and some of the features advocated are difficult to
discover (i.e. the detection of singularities in evolved curves). Wavelet decompositions
also perform well in terms of capturing details at multiple spatial scales, but early
formulations had problems with translational and rotational invariance; newer methods,
such as steerable pyramids (Simoncelli, Freeman et al. 1992) claim to overcome these
limitations.
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Transformational or Deformation Methods

Scale spaces are a generic term for families of derived images or shape which
attempt to capture aspects of shapes at various spatial frequency bands. In smoothing
approaches to scale space shape characterization, a gray-scale luminance image is subject
to a smoothing evolution by a family of Gaussian kernels with increasing neighborhood
size. Alternatively, in a more geometrical, abstract formulation, a curve may be evolved
by displacement at each point by moving in the direction of the normal vector by an
amount proportional to the curvature at that point. Each evolved shape in this iterative
process can be characterized by some feature. Zero crossings of derivatives, inflection
points, curvature extrema, and symmetry axes have been used as features (Kimia and
Siddiqgi 1994). The set of features extracted after the evolution process captures the shape
characteristics at a variety of scales. Extrema that survive larger smoothing extents may
be considered more significant, and might be weighted more heavily during feature based
distance computations.

Fig. 2.Example of curve evolution by geometry -driven diffusion.
Smoothing occurs by displacing each point from the original curve
proportional to the local curvature. The series of curves generated serve
as the basis for characterization of the original shape. From Kimia, B. B.
and K. Siddiqi (1994). Geometric heat equation and nonlinear diffusion
of shapes and images. Computer Vision and Pattern Recognition, Seattle,

IEEE Computer Society. Used with permission, IEEE.

The literature on curve evolution is primarily concerned with theoretical
problems and extensions and short on applied comparisons to other approaches. Curve
evolution scale space methods are argued to give good qualitative descriptions of shape,
but are rather expensive to compute and do not allow easy reconstruction in contrast to
decomposition methods (e.g. wavelet transforms) which also capture information at
various spatial scales. The listing of inflection points at each scale or iteration involves
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difficulties in the data representation and efficient computation of a similarity function,
since the number of inflection points for each shape is not constant. In addition, if the
shapes to be characterized are not simple solids bounded by a closed curve, missing
interior components would need to have separate evolutions and feature vectors, possibly
leading to ambiguities, singularity problems or problems handling an extended set of
vectors for each component when applying a similarity function.

Many of these defects have been reduced by a closely related, more recent
approach utilizing shocks (Tek and Kimia 1999). Shocks are the sites where diffusion
wavefronts from an object outline collide internally (on the medial axis of a shape), and
externally as well. Resulting shock graphs and their grammars have been used to
describe shapes, with similarity functions on the resulting graphs defined. The
representation has been proven sufficient to reconstruct the local shape from the medial
axis, tangents, velocity and acceleration of shocks (Giblin and Kimia 1999) . Medial axis
representations are normally sensitive to deformations in the outline, but methods have
been developed to distinguish stable from unstable shocks to ameliorate this problem
(Giblin and Kimia 1999).

While the neural mechanisms which might implement such transformations are
rather opaque, there is evidence that axis representations or skeletons are computed in
some fashion and influence the response of cells in primary visual cortex (Kovacs and
Julesz 1994); (Lee, D. et al. 1998).

Morphological Scale Space

A related approach relying on nonlinear transformation of the image at multiple
scales is designated morphological scale space (Korn, Sidiropouls et al. 1996). In this
approach, morphological operators of increasing scale are applied to the original image or
curve, again resulting in a family of transformed images. A pattern spectrum has been
proposed to characterize such an image family (Maragos 1988). The spectrum consists of
the accumulation of successive differences in area between a pattern and its successor as
opening and closing morphological operators of increasing scale are applied. Similarity
functions can be applied to the resulting histogram.

Comparison of Computational Methods and Psychological Responses

The application of geometric algorithms for shape similarity to the problem of
image retrieval in multimedia databases has motivated studies of how well a particular
algorithm corresponds to human judgements on the same task. One such study with a
large and diverse set of images (Scasseleti, Alexopoulos et al. 1994) found that each of
several algorithms performed very well for certain target images, but poorly on others.
Turning angle, the most robust of the algorithms across the images, was the best match to
human preferences on only 8 of the 20 target images used. Turning angle methods
require a search or fitting procedure to insure the best alignment between the feataure
vectors prior to computing the distance function; also, such raw curvature descriptions
are sensitive to scale. Descriptions based on sets of inflection points, like the sign of
curvature approach, reduce scale sensitivity in comparison with raw curvature.
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This finding of an apparent psychological primacy of local contour based
measures corroborates the finding of Hayward already mentioned (Hayward 1998) that
contours of binary images (silhouettes) are recognized with comparable performance to
gray scale images, and that contour (or some transformation of contour) is the major
information source for human object recognition and similarity.

Summary: Situating the Soca Approach in Computer Vision

The framework and implementation I develop here draws from many classical
computer vision concepts, as well as the image transformation, and representation space
concept introduced earlier in the context of the Chorus system. Statistics are used to
match histogram templates; currently a nearest neighbor decision function is used. These
statistics are over an abstract representation space which is designed to achieve the goals
of within-class tightness and inter-class separation, where each class is a depth rotation-
invariant description of a three dimensional object. The rotation invariance is formed by
a transformation method involving diffusion and blurring as part of its mechanism, like
the heat equation deformation methods. These scale space methods typically avoid
creating new spatial structure; in contrast, the procedure described here is completely
dependent on creating fine structure, and on cooperative interactions derived from those
structures.

A fundamental aspect of the Soca network implementation is that there is local,
receptive field like processing, with a diffusive “spreading of activity” character.
However, this activation is not to be understood as a monotonic variable associated with
detection of some feature. In image processing terms, the process can be considered as a
nonlinear filter with feedback, or iterative nonlinear convolution. This combination of
diffusion and highly nonlinear (non-monotonic) transfer function forms a representation
determined by both local features (e.g. curvature and corner elements) and medium-scale
structural relationships. The scale of interactions is determined by a window proportional
to the number of network iterations used to generate a representation meeting some
criteria. A particular juxtaposition of local curvature changes may, with appropriate
network parameters, result in a unique distribution or histogram in the representation
space. This type of process is, to my knowledge, a unique approach to combining local
feature and structural information; thus it represents one of the main contributions of the
thesis.

Forming such a representation - one that captures the co-occurrence of local
features - is a hotly debated subject in neuroscience, referred to as the binding problem.
While the problem is typically presented in terms of separate channels (such as color and
shape), the situation of decomposing an image or outline into a set of orientation
frequency detectors presents the same difficulty. Opinion on the subject ranges from
claims on the neural correlates of binding to assertions that there is no problem. This will
be discussed in some detail in a subsequent section on neuroscience.
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PERSPECTIVES FROM THEORETICAL COMPUTER SCIENCE

Computer science has certain perspectives and emphases that result in a
characteristic way of framing the problems of similarity and recognition. In this section,
I focus on two such perspectives. First, any spatial or temporal pattern can ultimately be
represented as a string in some alphabet. One traditional theoretical approach is to
consider families of such strings as a formal language, and to frame recognition problems
in terms of recognizing a language. This way of formulating recognition problems is also
relevant to the present thesis because it allows the tools and language of symbolic
dynamics to be applied. Symbolic dynamics will be taken up in more detail in the section
on dynamics and representation, and in theoretical discussions on proving the
representation-forming capability of Soca style transformations.

Dynamical Recognizers and Computational Mechanics

The problem of learning to accept positive exemplars of a language while
rejecting negative exemplars is known as language induction. Classical machine learning
approaches to this problem construct a finite state automaton to affect recognition.
Formally, a finite state recognizer is a quadruple {Q,X,8,F}, where Q is a set of states
(with q, denoting the initial state), ¥ is some finite alphabet, d is a transition function
mapping Q x>=> 0, and F C Q is a set of final or accepting states. A string of tokens
from alphabet 2 is accepted by the recognizers if, starting from initial state q, the
sequence of state transitions indicated by the tokens in the string ends up in one of the
final states in subset F.

A pioneering attempt to formulate the language induction problem as a
dynamical system, in the form of a recurrent neural network, was the study of Pollack
(Pollack 1991). The dynamical recognizer is a quadruple {Z,2,Q,G}, where Z C R"is a
state space; z,(0) is the initial condition. X is the input “alphabet”, where a particular
closed interval in Z corresponds to each element in this alphabet. (This correspondence
between intervals of state-space and symbols is a cornerstone of symbolic dynamics,
which will be mentioned again later). € is the dynamic, a sequence of transformations
w;:Z—Z (one for each token ) with an associated set of dynamical parameters; these
parameters are fixed for a particular recognizer during the induction (training ) process.
G(Z) —{0,1} is the decision function which maps one or more states in the sequence
produced by the dynamic to an accept/ reject decision. In Pollack’s work, only the final
state and token are used in the decision function. Within this general framework, the
dynamics and decision function are normally much weaker in computational power than
a Turning machine. Pollack notes that G may be generalized to a graded function
indicating “fuzzy” acceptance, or could return a more complex categorization or
representation.

The Soca network and recognition method I describe later is quite consistent with
this extended dynamical recognizer framework. A key difference is that the Soca net
operates on an image “string” in parallel (thus the state space has higher dimensionality
RY, where N is the number of pixels or sampled image elements), and the tokens are used
only once as the initial state. Such a parallel recognizer framework for picture languages
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with constrained states and transformations was studied in a series of papers by
Rosenfeld (Rosenfeld 1979). In Rosenfeld’s formulation, the transition function at each
pixel is now a function of several tokens in some spatial neighborhood; this is the cellular
automata formalism, which is described in the dynamics section later. The decision
function is necessarily modified by this larger state space. Rosenfeld proposed several
possibilities:

1. every spatial element reaches an accepting state

2. any element reaches an accepting state

3. one particular spatial element reaches an accepting state.

In the Soca network and recognition strategy, my approach is to form a metric
representation space, but that space consists of statistics measured instantaneously during
a high dimensional, parallel dynamics, rather than a direct map of the input features or
measurement space. These statistics naturally support an acceptance function; simply
define some threshold distance for each classifier, and accept an object as an instance of
language L if it satisfies this distance test. The distances might vary by class, depending
on the cluster density of that class in the representation space. Another contribution of
the thesis, then, is adding another type of decision function to the repertoire defined by
Rosenfeld. While such a distance threshold decision function is common in statistical
pattern recognition, it is novel for processes operating with local dynamics.

Other researchers have recently been concerned with decision functions over
spatial patterns processed by cellular automata, a form of spatially-extended dynamical
systems closely related to those used in the present work (Mitchell, Hraber et al. 1993);
(Mitchell, Crutchfield et al. 1996); (Hordijk, Crutchfield et al. 1998). Genetic algorithms
were used to generate and test particular one dimensional cellular automata (CA) which
decide, for example, whether a random initial condition has majority ones or zeros. The
group then examines space-time plots (i.e. plots of successive iterations of a 1-D spatial
array) of the resulting successful computations and develops an explanatory framework
based on physical metaphors; this framework is designated by this group as
Computational Mechanics.

Computational Mechanics seeks to reconstruct the computations embedded in
space-time behavior in terms of regular domains, particles, and particle interactions.
Regular domains are regions visible in space-time plots consisting of words (spatial
configurations) in the same regular language, i.e. regions that are computationally
homogeneous. Particles are localized boundaries between such domains; they serve as
information carriers. Collisions between particles are the loci of information processing.
This processing can be conceived in terms of operators such as decay of one particle to
many, reactions (state transitions between language domains at collision sites), and
annihilations (the disappearance of an interface as one language domain dominates future
spatial evolution at a collision site). The computational strategy can then be expressed in
the more concise language of particles and their interactions, substituting for a more
verbose description in the language of CA rule lookup tables and raw spatial
configurations.

While the computational mechanics group does not explicitly state this, the
decision function in the majority task can be considered a type of synchronization — until
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all cells reach the same language domain (which, in this simple case, is all O or 1) the
system is undecided. Consider a k-block as an adjacent set of k cells, with the entire CA
consisting of overlapping sets of such k-blocks. Each k-block of cells in this automaton
is defined by the state transition graph of a finite state automaton (FSA) with k states. As
the automata evolves, at each time step we can label each state with the fraction of k-
blocks which currently hold that value (we say they occupy the state). Synchronization
in this context implies that over time, the occupancy statistics of the graph converge to
sharp peaks, or an unchanging sequence of sharp peaks; particular sub-graphs of the
state-transition graph are active, while others become blocked, as their predecessor states
become unreachable within increasing spatial “territories”.

Note that particles have a characteristic velocity, and for certain kinds of
terminating conditions (such as a particular site or region reaching a value in a set of
accepting states F') one possibility for variance in the temporal processing is dependence
on the emergent particle velocities on initial configurations in a family of inputs, when a
“synchronization” decision function is reached.

Summary: Situating the Soca Approach in Computer Science

In summary, the Soca system extends the tradition of dynamical language
recognizers over spatial configurations, and attempts to unify this approach with
traditional metric representation space of statistical pattern recognition. Similar to the
work of Mitchell, Crutchfield, and their colleagues, the approach taken here is to discover
successful computations within a particular family of spatially distributed computations,
then analyze the result. I have generally proceeded with more constraints on the search
process, guided by general principles of pattern recognition.

The decision functions used here also involve synchronization in the sense
defined above, but the synchronization is partial and not defined to contiguous regions as
in the regular domains. Another key distinction of the Soca work from the research in the
computational mechanics group is that the present search strategy focuses on solving the
decision problem within a fixed number of iterations, rather than an open ended
synchronization process. This led to the hypothesis that dynamical changes (non-
stationary parameters or rules) might lead to superior performance relative to constant
dynamics, by forcing more rapid synchronization.
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Chapter 3: Topics in Neuroscience

In this chapter I will review the current issues and controversies in neuroscience
which have motivated the form of the network dynamics I investigate. The review will
encompass both single neuron and integrative neuroscience, with the latter referring to
larger scales and interactions across scales.

I begin with an overview of those objects of neuroscience research that bear on
the research topic of this thesis. Since the focus of the dissertation is on similarity and
object recognition, I survey recent experimental work on inferotemporal (IT) cortex, and
the theoretical commitments of the various research groups. This region is clearly
implicated in recognition and memory of objects, so it is important to review the findings
in that area before evaluating computer vision systems with claims to biological
motivation and plausibility.

Finally, I describe different approaches to neural systems modeling and how
these relate to the structures and methods of experimental neuroscience. A high level
treatment of the assumptions of connectionist neural modeling is contrasted with what
might be called dynamical pattern network modeling. I situate the present work in this
modeling context. The story will remain incomplete until the next chapter on nonlinear
dynamics, where many concepts required to discuss networks with more complex
dynamics are presented. I revisit biological and neural modeling concepts after
introducing such dynamics, and again in the final discussion.

BASICS OF NEURAL ORGANIZATION

The nervous system of humans can be regarded as consisting of peripheral
sensory and motor nerves, which connect transducers to the central nervous system. The
brain itself consists of various concentric layers progressing from the evolutionarily
oldest brainstem, through the midbrain, to the neocortex. Separate divisions within the
dense brainstem and midbrain regions are typically called nuclei or loci. The cortex, in
contrast, is generally divided into regions (areas, modules) distinguished long ago either
anatomically (by staining), functionally (by observing the effects of injury on that region)
or both. Modern imaging techniques reveal which of these modules are co-active in the
performance of a perceptual or cognitive task, and to a limited extent the sequencing of
their activity.

While cortical regions can be distinguished functionally, the amount of structural
similarity is striking. The basic cellular unit is the neuron, with hundreds of specialized
types organized into micro-circuits and larger systems. Cortical regions have a columnar
organization. There is a fine structure of minicolumns (30 wm in humans) and a more
coarse structure of macrocolumns (.4 — 1 mm). For a recent review, see (Calvin 1995).
The number of neurons across thickness of cortex (30u cylinder) are remarkably constant
around - 110 in motor, somatic sensory, frontal, parietal, temporal, in mouse, cat, rat,
macaque monkey, and man (Mountcastle 1978). Primary visual cortex columns are more
dense, with perhaps 160 cells with complex intra-modular connectivity. By intra-
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modular connectivity, Mountcastle means that the connections between regions are not
simple one to one projections of every minicolumn to a corresponding one, but consist of
“subsets, each with a particular pattern of connections to similarly segregated subsets in
other regional entities”.

Within each column, neurons are organized into horizontal layers, again with a
relatively uniform scheme of projections into and out of layers. Layers are numbered 1
(outermost) to 6 (deepest). In the visual system, layer 4 receives input from thalamus,
basal ganglia, and other cortical areas. It projects feed-forward to layers 2 and 3; these
are chiefly connected in their own layers and laterally to other columns. These in turn
project to 5 (motor output) or 6 (return to thalamus and other sub-cortical structures.
Note that loops or recurrent structures are pervasive in at least three groupings: intra-
layer, inter-column, and cortico-thalamic.

While investigators such as Mountcastle and Calvin emphasize the pervasiveness
of columnar structures in the cortex, counter arguments questioning the role of columnar
structures are found in (Purves, Riddle et al. 1992); (Swindale 1990).

Many regions are organized as maps'?, meaning that the spatial relationship
between some sensory field is preserved through one or more registered regions. The
visual system is well known in this regard; the sense of touch is also organized to produce
a topographic representation on a contiguous region of cortex. There are often
characteristic topology transformations in this mapping structure. The retina introduces
non-uniformities in sampling projected into visual cortex (area V1). For example the
macaque monkey areas V2, V3, VP are elongated in the horizontal (central to peripheral).
Some areas (inferotemporal) emphasize the central, densely sampled region while others
(parietal) emphasize the sparsely sampled periphery.

Anticipating the topics of the later chapters, it should be pointed out that much of
the history of neural modeling beyond low level vision fails to take into account these
two spatially regularities: mapping and laterally connected columnar structure. This
remains a gap between biologists and the connectionist community. The family of
models in the present thesis, known as coupled map lattices or discrete time cellular
neural networks, resemble the mapped column structures, with each “cell” representing
collective behavior of hundreds or thousands of neurons. Thus such models are
considered medium scale models, in contrast to microcircuit or small-circuit models.
Such regular physical architectures with chaotic units and recurrence have implicit
connection structures between communicating states, which may or may not be bound to
specific column-like structures !'. The units of representation and computation are these
states, rather than activation values of specific output neurons of a microcircuit.

10 The term map is used in a different sense elsewhere in this thesis, in the sense of a discrete time
function mapping values in a phase space.

1" For more detail on this topic of implicit structure in oscillating networks, see(Ito and Kaneko
2000) and (Kaneko 1990)
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THE NEURON

With a few exceptions, most theories of nervous system functioning focus on the
neuron as the main actor, playing roles in both signal processing and more abstract
computational processes. The assumed complexity of the operation of single neurons has
tended to increase with time. In their introduction to a recent compilation of neuron and
small-circuit level modeling, Abbot and Sejnowski (Abbot and Sejnowski 1999) offer the
sobering conclusion that at the time of writing (2000), there is actually little consensus
about the mechanisms leading to details of spiking activity in a single neuron, particularly
regarding fast, stimulus linked spike rate modulation that would be required for temporal
codes.

The classical model of neuron operation sees it as a threshold device, integrating
positive (excitatory) and negative (inhibitory) inputs on a graded potential input system.
This input system is the dendrite; a typical neuron receives input from as many as 10,000
other neurons. When a threshold is exceeded at the cell body or soma, the neuron fires a
spike down the output (axon), which contacts other neurons. The actual contact between
axons and dendrites is via complex electrochemical activity at synapses.
Neurotransmitters are chemicals released during firing of the axon, and received at the
dendrites; local production and absorption (re-uptake) of these chemicals are modulated
by complex electrochemical processes. The modulation of thresholds by transmitters at
the synapse and the propagation of spikes both rely on the complex dynamics of ion
channels. The dynamics of transmitter production, release, and channel chemistry are
subject to modulation at a variety of time scales, allowing networks with constant
anatomical connectivity to perform quite differently.

Any particular synapse is either excitatory (increasing voltage) or inhibitory
(decreasing voltage). A particular neurons axon terminals are all either excitatory or
inhibitory; while most neurons receive a mix of excitatory and inhibitory input. Families
of neurotransmitters play predominantly excitatory or inhibitory roles.

Early in the history of neuroscience it was thought that cross-scale interactions
between field activity of the neural mass and individual neurons (electrotonic coupling)
might play an important role in neural computation (Lashley 1942). Recently, there has
been some revival of this concept via the idea that gap junctions!? sensitive to activity in
the dendritic mass (neuropil) may affect behaviorally relevant synchronization properties
in brainstem neurons, even though the gap junction mediated currents may be as little as
2% of the total dendritic currents (Usher, Cohen et al. 1999). No equivalent
demonstrations of such effects in cortex are known to the author, but these results are
interesting in light of the fact mentioned earlier about relative sparseness (e.g. 10%) of
inter-column connections. It is possible that rapid communication between columns
could be mediated through this mechanism in less time that would be required for
synaptic transmission. The reader should bear this in mind when reviewing arguments
against any role for recurrent computations in visual processing, which are often made on

12 Gap junctions are a cell membrane structure similar to ion channels; they are universal in
intercellular communication, not limited to neurons. Specific protein regulation mechanisms in
gap junction complexes have been implicated in disease, e.g. high frequency deafness.

32



the basis of the hypothetical performance characteristics based on synaptic transmission
delays.

EXPERIMENTAL NEUROSCIENCE METHODS

What we know of neural functioning comes from a variety of experimental
methods developed over the last 100 years; the organization of the next few sections
reflects the knowledge gained from, and theoretical biases associated with, several
techniques. The emphasis is on signal flow and dynamics; methods for ascertaining
structure at various scales, down to detailed receptor types, are beyond the scope of this
review.

Neural measurements on organisms are typically done in one of three modes.
Measurements may be performed on slice preparations (in vitro), with a section of tissue
cultured for some time. With such cultures, transmitter dynamics can be observed with
the fast cyclic voltammetry technique (Stamford 1990). Neuron cultures have also been
preserved directly on silicon electrode arrays, allowing extensive measurements
(Kowalski, Albert et al. 1992).

Temporary or permanent (chronic) electrode implants are on used on live
animals (in vivo processing). The animals may be anesthetized, which of course makes
them easier to handle, but may give a distorted picture of neural functioning. More
recent research tends to use awake, behaving animals, giving a better picture of normal
neural functioning; still, the animals often view impoverished scenes and are far from
natural ecological contexts.

The workhorse of experimental neuroscience is the single electrode
measurement. There has been a strong mutual reinforcement of this technique with the
neuron doctrine, or localist processing: the idea that most representation and computation
in the nervous system is performed by single neurons and via small, specific functional
networks.

This technique has been supplemented more recently (beginning in the seventies)
by simultaneous multiple-electrode techniques. Most of the experiments motivating
oscillatory models are based on observations with two or more electrodes simultaneously
recording with the same stimulus present. There is also the possibility of an intermediate
technique of moving a single electrode to nearby areas while repeating the stimulus, but
due to habituation or learning this cannot really substitute for simultaneous
measurements. Observations with multiple electrode techniques have given insights
promoting alternatives to the neuron doctrine, emphasizing so called “dynamic
assemblies”, cooperative processing, synchrony, and variable coupling. Signal
processing techniques have been developed to assess the correlations between nearby
neurons.

In both single and multiple electrode techniques, the actual signal being
measured is voltage induced by conduction currents. These include spikes and possibly
graded potentials — many neurons do not produce spikes.

Moving up to medium or mesoscopic spatial scales, local field potential
electrodes and electrode arrays have been employed to measure summed dendritic
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currents over hundreds or thousands of neurons. These currents are effectively a measure
of ensemble average spike density (Freeman 2000). Some groups, such as Eckhorn and
colleagues in Marburg, measure both spikes and slow wave potentials in the same
system, allowing correlations between these levels of processing to be observed.

These local field potential arrays are a medium scale version of the older
electroencephelogram (EEG) technique. Most EEG studies record external to the scalp,
in single or multi-electrode (multi-channel) configurations. These signals are typically
bandpass filtered and analyzed for temporal changes and for inter-channel interaction in
various frequency bands. EEG signals are rather diffuse (many current sources sum at an
electrode) and historically considered as noisy; to investigate stimulus correlated signals,
a common technique is to repeat a trial many (e.g. 100) times, and sum the resultant
waveforms. Noise components are assumed to cancel, with the resulting evoked potential
signals showing correlations to perceptual and cognitive events.

The EEG was the first “whole brain” measurement technique; investigations at
this scale are usually designated as imaging or mapping. More recent imaging techniques
include MEG, which is costly but has higher spatial resolution relative to EEG. A variety
of slower temporal, medium spatial resolution techniques (PET and fMRI) measure
cortical blood flow, which is correlated to the activity in some area relative to a baseline
condition. Finally, a variety of optical methods are in use, in some cases on awake
behaving animals with implants.

One drawback of all imaging techniques is that networks consist of inhibitory
and excitatory neurons, and activity per se does not distinguish between them. As we
will see, many theories of large scale network operation depend on interconnected
excitatory and inhibitory pools, with the resulting activity not always easily characterized
in simple active inactive terms. A better understanding of mutual influences of long
range (i.e. between areas) activity and its local effects on multi-channel measurements is
likely to emerge in the near future, through efforts aimed at discovering the flow of
information and causal influences between co-active areas (Kaminski and Blinowska
1991);(MclIntosh and Gonzalez-Lima 1994; Taylor, Krause et al. 2000).

CLASSICAL, NON-CLASSICAL, AND DYNAMIC RECEPTIVE FIELDS

With all these techniques, experimenters must choose to define the stimulus
presented directly or indirectly prior to recording. Especially for single and multi-neuron
techniques, theoretical assumptions on the nature of the processing operations
constrained the range of stimuli used for many years in what, in retrospect, appears to
have been misleading fashion. Typically such studies were done with sine wave gratings
of various orientation, frequency, and contrast levels. Under these circumstances, the
concept of local, anatomically determined micro-circuits performing feature detection
became well established.

The usual formulation of a feature detector neuron involves a local configuration
of excitatory and inhibitory neurons called on-center off- surround. A neuron receiving
such input will respond most strongly (i.e. produces spikes at a maximum rate) to specific
frequencies and orientations, forming a receptive field. The set of neurons sensitive to
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particular orientations and spatial frequencies is considered as a channel, with the
function of primary visual cortex essentially acting as a filter bank with some adaptive
dynamic range correction capability.
1
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Fig. 3. The response of (A) on-center off-surround receptive fields
and (B) off-center on surround in the retina as a function of the
distance of a bar stimulus from the field center. From Maffei, L.
(1968). “Inhibitory and facilitatory spatial interactions in retinal
receptive fields.” Vision Research 8: 1187-1194; reproduced with
permission of Elsevier Science.

The modern view of receptive fields, while still formulated as static structural
elements in the vision system, is to consider simple cells as optimal two-dimensional
Gabor filters. This representation has been demonstrated to achieve theoretical maximum
in both frequency and spatial resolution (Wilson and Knutsson 1988), and is now
commonly used as the “front end” for many successful computer vision applications.
Texture analysis, in particular, is seen to be largely a function computable by the
receptive field structures of primary visual cortex without additional back end processing
(Bovik, Clark et al. 1989).

The receptive field concept has of, course, been subject to criticism.
Fundamentally, practical limitations in biological recording preclude exhaustive sampling
of the possible stimulus space. Harth showed that determining a receptive field via his
Allopex biofeedback device, which changed a video stimulus until a local maxima was
reached in the neural response, gave a completely different picture of the field shape than
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conventional grating methods (Harth and Tzanakou 1974). The modern version of
independent, fixed (i.e. structural) Gabor channels has been questioned based on
psychophysical findings that pre-trained vs. naive subjects exhibit different confusion
patterns for a mirror image compound Gabor stimulus (Rentschler, Hubner et al. 1988);
this is interpreted as evidence for cooperative interactions and stimulus dependent
adaptation. More recent objections to the receptive field channel model of primary visual
cortex function based on experimental observations of multi-neuronal correlations and
temporal modulation in response profiles are treated below.

From a theoretical standpoint, the Gabor filter bank and subsequent wavelet
representations represent an improvement in distinguishing textures with the same
Fourier spectrum; this comes at the expense, however, of translation and rotation
invariance. The concept of shiftable transforms and steerable pyramids represent one
approach in computer vision to overcome these limitations (Simoncelli, Freeman et al.
1992).

Further studies with less constrained visual stimuli revealed a more complex
picture. The presence of orthogonal components modulated the response of feature
detectors; eventually it was determined that rather distant features could modulate the
response of a classical feature detector (Allman, Miezin et al. 1985), and that a single
neuron’s output carried information on the global character of the stimulus at later epochs
(Lee, D. et al. 1998). The term non-classical receptive field has been introduced to
acknowledge the changing nature of this concept.

Systematic examinations of the temporal response in primary visual cortex in cat
(Area 17) undertaken by Dinse and coworkers (Dinse, Kruger et al. 1991) revealed that
receptive fields have a dynamic (time-varying) orientation sensitivity and size,
inconsistent with a static structurally determined inhibitory surround. Further, four
different families of neuronal subsystems were found within the area. Type I neurons
(24%) showed an initial period of non-selectivity, with selectivity emerging after about
40 ms. Type II (34%) similarly showed emerging selectivity, but the selected orientation
changed over time. Type III neurons (25 %) showed more conventional orientation
tuning with no time dependence, but with broader tuning than that exhibited by the other
types. In the time varying types, the response epoch (70-90 ms) with the sharpest
response did not coincide with the highest rates of response.

The overall pattern of the response was characterized as a damped aperiodic
oscillation of low frequency (6-20 Hz) superimposed by higher frequency oscillations.
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Fig. 4.Time varying receptive field structures. See text above for
description From Dinse, H. R., K. Kruger, et al. (1991). Temporal
Structure of Cortical Information Processing: Cortical Architecture,
Oscillations, and Non-Separability of Spatio-Temporal Receptive Field
Organization, in Neuronal Cooperativity. J. Kruger. Berlin, Springer-
Verlag: 68-104. Reproduced with permission of Springer Verlag.

These two key aspects of neural response identified by Dinse and coworkers —
diverse types and temporal variation in response profiles - should be kept in mind when
evaluating work on object-level recognition in inferotemporal cortex., which will be
surveyed in a subsequent section. 13.

One study states that no difference in discrimination capability of single neurons
is found by comparing fine-grained temporal epochs in IT cortex (Tovee and Rolls 1995)
compared to the rate over an entire 400 ms response window. However, the possibility of
different types of neurons, or a population response is not considered.

The models I will describe later correspond to large neuronal populations, but
also exhibit this temporal response variability. There is a brief optimal readout window

13 A recent cortical column model (Hansel and Sompolinsky 1996) also exhibits temporal
variation in response profiles.
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in which objects can be maximally discriminated. In my model, this readout window
applies to the entire population of high level units.

THE PROBLEM OF NEURAL CODING

The receptive field idea was one of the first biological demonstrations of a
plausible neural computation and code, though theoretical studies of neural coding and
computation predated the demonstration of receptive fields by Hubel and Wiesel (Hubel
and Wiesel 1962). I will take up the idea of coding a bit more formally in a subsequent
chapter; for now it is worth stating that coding in communications theory normally
implies a sender and a receiver. In experimental neuroscience, the complexity of the total
system dictates that researchers focus on a small piece of a large network of processing
and transmissions leading to behavioral distinctions. Particularly when the object of
study is the spiking activity of a single neuron, the ultimate receiver is often unknown
and assumed to be capable of using the information; in fact the researcher interpreting
the code of the neuron is the only receiver known with certainty. In general, this readout
problem is a major issue that must be addressed by neural modeling with claims of
biological plausibility.

The receptive field or feature detector, grounded on the assumption of spike rate
coding in single neurons, has been challenged based on this readout principle. Neurons
show a high degree of variability even when presented with the same stimulus. Spike
generation is precise and reliable, so this variability arises from fluctuations in input that
drives neuronal firing. But this view is problematic due to the large (e.g. 10* for cortical
pyramidal cell) numbers of inputs integrated; one would expect small variability due to
the central limit theorem. Koch & Softky thus argue that neurons do not integrate
excitatory synaptic inputs over a reasonable period of time. (Softky and Koch 1994).

Another readout-based challenge to rate codes is that the most reasonable
window of integration for a rate code is the longest duration over which the stimulus can
be approximated as taking a constant value. Some neurons only fire about one spike in
such an interval, and thus arguably cannot encode and convey information through a rate
code. If the neuron is part of a large population, this may be overcome by encoding (and
reading out) a population firing rate (Abbot and Sejnowski 1999).

If the use of rates is viewed as problematic, what are the alternatives? Two major
alternative paradigms are under intense investigation. One is that individual spike arrival
times serve as a code, and in general spike arrival time coincidences are significant for
algorithm level neural computation. Another is that significant computation is done by
cell assemblies of one form or another, with population coding of intermediate results,
memories and motor outputs.

The variety in potential coding schemes has been recognized for a long time, but
practical difficulties in experimental methods have inhibited the investigation of many
possibilities other than local rate codes. Bullock, for example, drew up a list of
possibilities summarized in the outline below, and suggests that many or all of these
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coding strategies are employed somewhere in the nervous systems of different organisms
(Bullock 1993).

Candidate Neural Codes

I. Subthreshold Graded Events
II. Impulses in Unit Neurons
A. Representation by Identity of Active Fiber
B. Codes based on Temporal Properties of Impulses
Time of Occurrences
Interval Statistics
Frequency: Weighted Average
Frequency: Instantaneous
Frequency: Increment Above Background
Frequency: Rate of Change
Frequency of Firing / Missing at Fixed Intervals
Coefficient of Variation
Higher Moments: Interval Histogram Shape
Temporal Patterns of Impulses
Number of Impulses or Duration of Burst
Velocity Changes in Axon
C. Codes on Other Properties
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Candidate Neural Codes, continued

III. Ensemble Activity
A. Representation by Spatial Array
1. Topographic Distribution of Active Fibers
B. Codes Based on Temporal Relations
1. Latency Distribution
2. Phase Distribution
3. Probability of Firing After Stimulus: PST Histogram Shape
C Representation by Form of Composite or Multi-Unit Activity
1. Evoked Potential shape
2. Slow waves in ongoing EEG

The coding strategies treated in the present work are a small subset of these
potential forms of coding and computation compiled by Bullock over 30 years ago from a
workshop on the nervous system. The following diagram presents a restricted set of

possible choices and locates some of the functional network types discussed in a space of
choices for coding.
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prototypical functional units. The x axis indicates whether coding
occurs at single neurons or via groups. The y axis indicates
whether, for group or population codes, whether the code is local or
statistical. For the former, the code may be distributed but still
depend on activation values at particular units; for the latter,
statistics over the entire population carry the code. The z axis
indicates whether the relevant units and the code are monotonic
activation values, or involve temporal coding. To produce temporal
codes, neurons act as spike timing detectors and / or constituents of
distributed bifurcating subsystems in medium scale oscillatory
networks, resulting in temporal patterns in phase dispersion and
ensemble average frequency.
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NEURONS IN CELL ASSEMBLIES

In theoretical and computational neuroscience, the alternative to coding and
computation with neurons and small circuits has been the concept of a cell assembly.

Early research in cell assemblies concerned conditions for activation and stability
in memory. Over time, generalized notions of assemblies have come to be replaced by a
variety of specific functional circuits of connectionism, though a few researchers have
always focused on larger scale models. Even in these models, activation was the
dominant paradigm for analysis and simulations.

Much recent research implicated temporal correlations and synchronization for
certain classes of coding and computation in early visual areas, with substantial evidence
for this view reviewed below. To distinguish the classical assembly based on activation
from new forms emphasizing spatio-temporal patterns, correlations, and synchronization
phenomena, the term dynamical cell assembly was recently introduced (Fuji, Ito et al.
1996); however it was presented in the context of small spiking networks. This may be a
worthwhile distinction, but need not be limited to spike correlations and small circuit
models.

I suggest that in higher areas, such correlations are functional correlates or
observables of larger scale computational processes, for which the simplest algorithmic
explanatory level lies in non-stationary dynamics of coupled oscillator systems. This
algorithmic understanding may contribute to an extension or revision of extant cell
assembly concepts.

One contribution of this thesis is the demonstration that recurrent dynamics,
spatial coupling, and temporal modulation of synchrony can support computations with
relatively simple and homogenous structure. Synchronization is affected through
modulations of network control parameters; these may reflect intrinsic rhythms, be
generated in response to stimulus, or a combination of both. In this formulation,
collective variables (i.e. population codes) measured on a set of oscillators, supplement
classical coding concepts of activation variables on localized units or localized cell
assemblies. Each of these oscillating assemblies may correspond to neurons rather
widely distributed, such as a column of cortex with connections to interacting subcortical
areas. Such assemblies may interface with rate coded activation assemblies for readout
or memory coding.

In contrast to small spiking microcircuits, larger scale dynamical states are more
easily correlated with medium and large scale electrophysiology (Freeman and Barrie
1994). The validation of connectionist models from single neuron or localized multi-
channel recordings is a difficult task, because measuring all the neurons in a network is
simply impractical.

For some researchers, the large amount of inter-region connectivity and the fact
that most neurons project both locally and between regions, argues against local modular
networks as envisioned by classical “small circuit” connectionism and classical modular
cognitive science (Elbert, Ray et al. 1994, ); (Mumford 1994).
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THE CONTROVERSIAL ROLE OF RECURRENCE IN CODING AND COMPUTATION

We have seen that the anatomical connections may be described as reciprocal or
recurrent at a variety of scales - within a single layer of minicolumns, between the
laterally connected columns constituting a macrocolumn, between cortical areas and the
subcortical areas which project to them, and between different cortical modules. In spite
of this connection pattern, much theory in sensory and especially visual neuroscience is
based on feed-forward models of computation, with lateral connections limited to special
roles such as the on-center off surround receptive fields. In the context of feed-forward
theories, if any role for local recurrence (i.e. within a column) is envisioned, it is to form
population codes. These may be simple averages (to overcome the response variability
cited earlier by Softky and Koch) or to exploit a Gaussian distribution of rates to perform
function approximation (Poggio and Girosi 1990).

At larger scales, recurrent connections projecting back toward earlier sensory
pathway regions have been ascribed roles in attentional processes, shifting and rescaling
control (Van Essen, Anderson et al. 1994), or contextual modulation (Allman, Miezen et
al. 1985) via linear signal processing mechanisms such as inhibitory gating of pathways
or responses of receiving cells. Grossberg and colleagues conceive of some recurrent
back projections as expectation signals (Grossberg 1980).

Several investigators working on problems of object recognition stress that based
on the rates of recognition observed and the number of modular stages thought to be
involved in processing, only feed-forward processes are possible. The putative site of
invariant object recognition is the inferotemporal cortex, and stimulus invoked responses
in this area are sufficient for experimenters to identify the stimulus form presented (from
a restricted range of possibilities ) in about 100 ms.

If the coding assumption governing both computation and representation is
localized rate coding, the arguments are compelling. However, as we begin to review
evidence and theory derived from multi-channel recordings in IT cortex, other coding and
computation possibilities are raised based on spike coincidence, and deterministic
changes in rates in larger networks of aperiodic oscillators. It is unclear that round trips
between cortical modules, between cortico-thalamic areas, or widely separated lateral
connections are required to achieve correlations between areas.

Local recurrence in columns, between neighboring columns (possibly exploiting
gap junctions), and with ongoing background input functioning as bifurcation control
signals are assumed to be the biological correlates of the models I develop in the next
chapter. The ongoing background input may indeed be rhythmic signals from recurrent
cortico-thalamic loops, but no signals need make the round trip. Freeman estimates the
average time for signal transfer between pyramidal cells at distance of 1-2 mm at about 8
ms (Freeman 1992). This puts an upper bound of 10-20 iteration cycles for perceptual
computations which produce a response in 100-200 ms.
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TEMPORAL VS. RATE CODING STIMULUS PREDICTION FROM POPULATIONS IN
PRIMARY VISUAL CORTEX

Kruger and Becker conducted studies with a regular spatial array of
microelectrodes in Area 17 (primary visual cortex) of the cat, in which they assess the
ability to predict which of 16 moving bar stimuli was shown (Kruger and Becker 1991);
(Kruger 1991). An average response vector over several trials was computed for each
stimulus, with the prediction based on a single non-averaged trial. The total response
time was broken up into temporal bins, so that the vectors to be compared are of size:

responseTime
binWidth

channels *

where channels is the number of electrodes (30), responseTime is the post-
stimulus time interval recorded (300 ms), and binWidth is the time in ms. of a temporal
bin on each channel. Two measures of vector comparison were used; the cosine of the
generalized angle method gave better predictions than a sum of difference measure. This
implies that scaling all bins by a constant rate increase does not change the stimulus
prediction. The authors interpret this to mean that the temporal pattern codes stimulus
identity but the rate codes the importance of the response. Further, they suggest that this
helps resolve the apparent coding paradox related to how attention could modulate the
early vision response if rate codes alone were used. The major finding is that the best
predictions are obtained with more fine-grained bins, indicating that temporal codes
rather than rate codes are the best population measure. A broad maxima from 20 to 80
ms is seen (figure below on following page).
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Fig. 6. The percentage of corrected responses as a function of the temporal
resolution for averaging spike rates of a 30 channel spatio-temporal
response vector for various time bins. Using a rate code (i.e. averaging
over the entire 300 ms response interval) approaches a chance prediction
level. From Kruger, J. and J. D. Becker (1991). “Recognizing the visual
stimulus from neuronal discharges.”, Trends in Neuroscience 14: 282-
285. Reproduced with permission of Elsevier Science.

SYNCHRONIZATION AND CORRELATIONS: PHENOMENA AND ANALYSIS
METHODS

I now turn from the discoveries and controversies surrounding single electrode
measurements to a new set of ideas on coding and computation which have emerged from
simultaneous multiple electrode measurements of temporal variation in neural
microcircuits. The work of a few different groups will be briefly mentioned; an
ambitious survey by Fuji et al. treats much of this work in greater detail, along with some
modeling work on spatio-temporal coding (Fuji, Ito et al. 1996). Fuji et. al model these
phenomena with spike detector neuron models with delay. In the next chapter on
dynamics and methods, I will present models which embody similar spatio-temporal
computation and coding principles but correspond to larger scale network dynamics.

To begin, I will note the definitions given in that survey for some common terms
and attempt to augment them slightly. Coincidence refers to local events in the synapses
of a single neuron, essentially the probability of receiving spikes in a given temporal
interval. Synchrony refers to simultaneous (phase locked) firing of a group of cells. The

45



two are closely related. Models of neural functioning involving precise spike timing
posit that neurons are maintained near threshold by balanced excitatory and inhibitory
input; in this state, they tend to fire based on sufficiency of coincident input with less
regard for the average rate of firing on excitatory inputs. Coincidence is essentially a
pathway to synchrony. Synchrony can be considered at the level of spikes or rates; for
the latter, some integration window may be chosen and synchrony measured at the level
of corresponding rates, even if individual input spikes on neuron events showed
coincidence only at chance levels.

Correlation comes into play at a system level; Fuji et al. define a dynamical cell
assembly as a group which, in response to the context of stimulus or another group is
temporarily “bound by coincident timing of spikes”. This is a more complex phenomena
than synchrony, as it may imply temporal variations in correlation which lead to the
formation of spatio-temporal patterns and to the formation of clusters of synchronization.
Peaks in cross-correlation between members of such an assembly may occur with delay.

Historically considered as stationary processes, neuronal inter-spike intervals
show characteristically Poisson distributions in cortex, but Gaussian distributions in
motor systems. Given this fundamental irregularity, fluctuations in correlations are
expected, and expectations and variances for correlation between two neurons can be
defined. These are dependent on the firing rate, computed over some integration
window. What is of interest to experimenters, then, are repeatable stimulus invoked
correlations which are significantly above or below the expected values.

These measurements clearly depend on the time windows chosen to compute
rates; classical cross-correlation methods assume that the neural signal is stationary.
Methods have been developed to handle time varying rates by Aertsen, Gerstein, Vaadia,
and coworkers (Gerstein 1988; Aertsen, Gerstein et al. 1989; Aertsen and Gerstein 1991),
(Vaadia, Ahissar et al. 1991). The resulting data for pairs of neurons show peaks and
troughs in correlation over time, which are interpreted as changes in functional coupling.
This functional coupling or effective connectivity is in contrast to structural (anatomical)
connectivity. It emerges rapidly, and is observed to be context dependent and dynamic
on several different time scales.

An example of a two channel non-stationary correlation measurement for a
neuron pair is shown in the following information rich figure. Each x, y point of the
100x100 matrix corresponds to the correlation strength for a different time lag between
signals. Along the x and y axes are conventional post stimulus time-locked histogram
(PSTH) spike counts for each neuron. This matrix has been normalized by subtracting
the individual neuron PSTH cross product and dividing by the cross product of standard
deviations of the individual PSTH. It is this normalization procedure which attempts to
extract modulations in coupling from stimulus related modulations of firing rates.

The diagonal base of the “T” on the right half of the figure is the PST
coincidence histogram, obtained by integrating over a 4 bin radius orthogonally from the
diagonal of the left normalized matrix. The diagonal crossbar is a standard cross-
correlogram. The two orientation and direction sensitive neurons from cat area 17 were
exposed to moving bar stimuli, switching from non-preferred to preferred direction.
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Fig. 7. Temporal changes in correlation structure for non-stationary signals.
See text above for explanation. From Aertsen, A. M. H. J. and G.
Gerstein (1991). Dynamic aspects of neuronal cooperativity: fast
stimulus-locked modulations of effective connectivity. Neuronal
Cooperativity. J. Kruger. Berlin, Springer-Verlag. Reproduced with
permission of Springer-Verlag.

Recent study of synchronization patterns in motor cortex indicates that
synchronization and firing rate modulations are both important and may play different
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roles (Riehle, Grun et al. 1997). For one-third of 359 neuron pairs recorded, significant
synchronization was observed, loosely time-locked to behaviorally relevant events.
Synchronization in spikes was accompanied by firing rate modulation for external
stimuli; for internal events (i.e. stimulus expectancy) synchronization occurred but
significant firing rate modulations were absent.

PERIODIC AND APERIODIC OSCILLATIONS AT SMALL AND MEDIUM SCALES

The early history of cell recording was performed chiefly within the framework
of feature detectors described above. From about 1985 on there has been a significant
trend toward using multiple electrodes, documenting a variety of oscillatory phenomena.
Seminal experiments of this type were rabbit olfactory system recordings (Skarda and
Freeman 1987); (Freeman 2000), and observations of brief stimulus linked periodic
oscillations in cat Area 17 (Eckhorn, Bauer et al. 1988; Gray and Singer 1989). Further
observations of periodic stimulus linked oscillations in monkey primary visual cortex
followed. The phenomenon has been controversial, perhaps in part by an early emphasis
on periodic oscillations which are less common than aperiodic oscillations. With
aperiodic oscillations, the apparently deterministic nature of the process and the role in
cognition only becomes evident by coherence studies carried out in a behavioral context
(Bressler and Nakamura 1993).

The interpretation of these results has varied, but usually there has been a focus
on feature linking or binding for the periodic oscillations, while aperiodic oscillations are
interpreted as possible temporal codes, or as products of deterministic chaos. As
computational studies of coupled high dimensional chaotic systems have proceeded in
parallel with the experimental work, the interrelated nature of all of these viewpoints has
become apparent. Strongly coupled chaotic systems can become phase locked in periodic
or aperiodic modes, and exhibit transient episodes of periodic oscillations; such systems
will be described in the next chapter, and are the foundation for the algorithmic level of
the similarity and stimulus invariance problems.

In the next several sections, some specific results are cited in support of this
view. For more in depth reviews of oscillation and synchronization experiments and
theory consult Bressler (Bressler 1995), Singer (Singer 1996), Eckhorn (Eckhorn 2000)
for diverse perspectives; Elbert et al. emphasize chaotic oscillatory dynamics (Elbert,
Ray et al. 1994), while Fuji et al (Fuji, Ito et al. 1996) emphasize the formation of cell
assemblies.

The chief sense in which the present work offers a perspective distinct from these
investigators, is an emphasis on temporally structured (e.g. non-stationary) modulation
of synchronization in coupled chaotic systems!4. T assert that this perspective holds some
potential to explain many experimental datapoints, or at minimum to widen the

14 1t seems on reflection that the work of Bressler and colleagues cited earlier, involving
modulations in synchrony over many bands (with alpha showing a slightly different profile) is
closest in spirit to this emphasis.
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discussion. This point of view also offers a mechanism for how distributed inter-regional
networks might cooperate to perform computations in task specific brain states.

A _ B
e X t+1 X t+1
) R2 /< A
tl X, X,
> time > time

Fig. 8. Illustration of assemblies in two regions R1 and R2 cooperating to
change dynamical parameters. A) The ovals represent coupled pools of
randomly connected excitatory and inhibitory neurons. At time t1 one of
the pools decreases its activity. B) Each curve on the right indicate spike
firing probabilities in successive time windows; The height of the curve
can be modulated by changing thresholds or excitatory inhibitory ratios.
(See discussion of (Anninos, Beek et al. 1970) in the following chapter).
The two curves correspond to dynamics before and after removal of the
R2 excitatory pool at time t1.

PERIODIC STIMULUS LINKED OSCILLATIONS IN VISUAL CORTEX

Gray and coworkers found that cells 17 mm apart in cat Area 17 (primary visual
cortex) with similar orientation preference showed both oscillations and significant
correlation for a long moving bar which passed over both cells simultaneously (Gray, P.
et al. 1989). Weaker correlation was seen for two separate moving bars, while no
significant correlation was seen for bars moving in opposite directions. The spike counts
produced by the two cells were similar under all three conditions .

Later studies showed that such effects were replicable in awake cats and
monkeys, and synchronization could be observed even across hemispheres. These have
been called fast cortical oscillations, occurring in the gamma range (30-80 Hz).

Eckhorn (Eckhorn 2000) suggests that the classical receptive field concept should
be extended or supplemented by association fields which capture feature context, and
therefore larger scale spatial regularities in the input. Using synchronization dynamics
and coding, these association fields represent small visual objects or parts of larger ones,
extending over a few millimeters of cortical surface.
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MODULATION OF COHERENCE BETWEEN REGIONS

Seeking to explain large scale integration of networks, Bressler proposed three
steps required to map functional connections among cortical regions. Sites from each area
should be sampled simultaneously, and all possible site pairs should be examined for
synchronization. Studies should be carried out within the context of a well defined task;
and the measures of synchronization should allow for the possibility of aperiodic
synchronization.

Several interesting findings resulted from this approach. Synchronization of
distant (frontal sites) could occur at roughly the same time it appeared in visual sites,
indicating that serial cascades from visual areas to frontal played little role.
Synchronization appeared in episodes lasting from 50-299 ms. These episodes were
broadband, not limited to y synchronization seen in visual cortex. Differences were seen
in the GO (motor response) and NO-GO (response withheld) conditions, particularly for
non-visual sites. This is interpreted as indicating a functional role for synchronization.
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Fig. 9. Local field potential, filtered from 30-80 Hz, for a single trial,
showing modulations in coherence of IT and striate cortex. In the framework of
the Soca model described here, these modulations might correspond to transfer of
phase synchronized contour border shapes from V1/V2 to IT (stimulus onset to 50
ms) in a restricted subspace of the dynamics, followed by subspace
desynchronization (reduced local coupling), and subspace synchronization
epochs. From Bressler, S. L. (1995). “Large-scale cortical networks and
cognition.” Brain Research Reviews 20: 288-304. Reproduced with permission of
Elsevier Science.

SPATIOTEMPORAL OSCILLATION PATTERNS IN POPULATIONS

Walter Freeman and coworkers have refined experiments and a theory of
medium scale (mesoscopic) neural function in the olfactory system over the course of
nearly 40 years, in one of the most comprehensive, multi-scale research programs in
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neuroscience. Single neurons play little role in this program, with the emphasis on group
activity, and with oscillations apparent at higher levels and observable in EEG.
Individual activity is important chiefly in forming a transfer function of pulse to wave
mode in dendritic mass (neuropil) groups. These groups are exclusively either excitatory
or inhibitory, with primitive oscillating groups emerging from connecting the two types.
Beginning in the mid 1980s, their interpretation of olfactory neural dynamics emphasizes
spatial patterns of amplitude modulation, possibly as a manifestation of underlying
chaotic dynamics. Further research has complicated what initially promised to be a novel
and possibly comprehensive theory of neural function.

Skarda and Freeman documented physiological evidence for complex dynamical
behavior in the rabbit olfactory bulb and provided an analytical model and numeric
simulations with good fit to the EEG signals measured in vivo (Skarda and Freeman
1987). One key result was that the encoding of learned perceptions are “wings of chaotic
attractors” of the global network, in contrast to the point attractors of Hopfield and feed
forward networks. The term wings, to my knowledge, rarely appears elsewhere in
dynamics literature; perhaps a more mainstream and contemporary reading would be
dynamical motion with reduced phase space volume, exhibiting the underlying unstable
periodic orbits.

Two key roles for the intrinsic chaos of the olfactory bulb are envisioned. The
network cycles between highly chaotic and convergent (quasi-periodic) phase regimes,
corresponding to exhalation and inhalation. The background chaotic state is
deterministic, but is modified by each new perception-learning cycle of the network. The
chief claim made for the function of these chaotic-period cycles are that they provide a
novelty filter to stimulate motivation; a novel perceptual field will not fall into an existing
cyclic attractor, but instead falls into a so-called chaotic well. Entry to this dynamics
triggers a change in the network parameters to allow formation of a unique attractor and
category, which is then learned by weight modification. It is also conjectured that the
chaotic state provides rapid and unbiased access to existing attractors, and further that the
chaotic half of the cycle avoids any accidental entrainment of attractors due to co-
activation of neural assemblies from intrinsic structural resonances.

Regarding the theory of binding by oscillations, Freeman states that within his
spatio-temporal pattern framework, the narrow band oscillations (the observations of
Gray et al., Eckhorn et al., and subsequent workers described above) should be
considered as transient coherences or intermediate products of integration; he asserts that
they are not given as output (of a modular region) unless their phase and frequency are
consistent with the whole (larger scale emerging pattern).

In recent writings, Freeman de-emphasizes his previous commitment to pure
chaotic attractors, in favor of a more general non-stationary processing scenario (Freeman
2000). He has stated:

The issue is not whether cortical dynamics is chaotic, that is not only
unresolvable but unimportant. The issue is whether masses of neurons forming
an area of neuropil are capable of establishing spatial patterns of cooperative
neural activity with characteristic broad spectrum carrier over areas far greater
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than the mean length of dendritic and axonal arbors. These patterns must be

formed in time periods much shorter than their 0.1 sec duration. [My work]

shows these are reliable properties of laminated neuropil.

He has explicitly argued against strongly coupled chaotic oscillators as a model
of brain dynamics recently (Freeman 1999), stating that “the synaptic coupling of
multiple chaotic domains in the neuropil of cerebral cortex is not revealed in phase
locking or synchronization at zero lag of local mean fields in the time domain”.

The work described in this thesis, while using coupled chaotic oscillators as a
starting point, does not assume phased locked synchronization or stationarity. In fact,
nonstationary dynamics and avoidance of what might be called subspace synchronization
are built into the learning system. While phase synchronization in the sense discussed in
this review plays only an implicit role in the networks dynamics, this second meaning of
synchronization derived from symbolic dynamics and graph theory, does play a crucial
role. The concept will be further developed in the next chapter.

LARGE SCALE DYNAMICS: EEG AND MEG MEASURES AND THEORY

For nearly 70 years, large scale electric fields have been observed non-invasively
in animals and humans, for both research and clinical applications. The
electroencephalogram (EEG) is sensitive to both cortical and sub-cortical components,
has poor spatial resolution, and incurs distortion in spatial patterns due to impedance
differences in tissue. More recently, the magnetoencephalography (MEG) technique has
permitted observation of magnetic fields, which offers several advantages (Basar 1998).
MEG is selective to cortical activity, in contrast to EEG which mixes sub-cortical and
cortical sources. The skull and extra-cerebral tissue are practically transparent to MEG.
EEG requires selection of an arbitrary ground reference state, while the MEG field does
not. The dipole moments measured by MEG are higher resolution; 10nA of current is
estimated to correspond to the emission from 200-500 mm* of cortex (Hari 1997).
However, the MEG technique is more expensive and less widely available.

Both EEG and MEG are generally broad spectrum, with changes in band power
and inter-regional correlations studied for functional relationships to perceptual and
cognitive processes. The following table summarizes the classical bands of interest;
certain boundaries, especially gamma, seem to escape consensus.

Table 1. Major Rhythms in the EEG

band frequency | behavioral and cognitive correlates
range (Hz)
delta 0.5-3.5 deep sleep
theta 4-8 early stage sleep
alpha 8-13 mental activity, memory, attention, association
gamma | 30-80 sensory processing
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There are two main approaches to studying the interaction of large scale
electromagnetic oscillations with cognitive, perceptual, or motor activity.

1. Searching for stimulus (or internal event) related trends in band power. This is the
field of evoked potential studies. Correlates of behaviorally related internal events,
such as decision processes or motor preparation events, may be studied in addition to
responses to an external stimulus. Typically, many responses to a repeated
experimental trial are summed, under the assumption that any signal is embedded in a
large noise component which approaches zero mean over many trials. The resulting
curves show changes in spectral content at characteristic latencies. More recently,
there has been an emphasis on more subtle changes in the shape of spectral peaks.

2. Examining correlations in both phase and amplitude between regions thought to be
active. Techniques showing changes in cortical blood flow may be used to guide this
research, establishing spatial regions of interest for analysis.

Another approach pursued by several investigators over the last generation is to
apply analysis methods of nonlinear dynamics, attempting to characterize the signals as
low-dimensional chaos; see Elbert (Elbert, Ray et al. 1994) for a survey. This approach
has fallen out of favor, since the methods require long periods of stationarity. Freeman,
one of the early pioneers in this approach, has recently called that program a failure,
given that dynamics appear to be non-stationary, irreducibly high-dimensional, and
blending elements of determinism and stochasticity to serve specific functional roles
(Freeman 1999).

Signal stationarity (constant parameters in the underlying dynamics) and the
relationship of noise are constant source of difficulty and controversy in the field.
Though many of the classical techniques (Fourier decomposition of signals, correlation
analysis) assume stationarity, there is widespread agreement on the non-stationarity of
EEG, leading to the recent emphasis on spectral shapes and correlation changes as inter-
regional control systems. A variety of methods for analyzing non-stationary signals, or
segmenting them into stationary windows have been developed (Gersch 1987; Pardey,
Roberts et al. 1996).

Another problem in EEG analysis is that the background state of an organism is
highly variable and partly determines the evoked response. To compensate for variability
in evoked response dependent on the background conditions at the time of stimulus
variation, Basar and coworkers more recent methodology consists of recording pre-
stimulus EEG and post-stimulus evoked potential. A so called enhancement factor (the
ratio of evoked to background power for frequency bands) is considered as a measure of
resonance phenomena (Basar 1998).

A number of methods have been proposed which attempt to go beyond
correlations, by determining the flow of causal influence between co-active and
correlated regions (Kaminski and Blinowska 1991); (Mclntosh and Gonzalez-Lima
1994).
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INFEROTEMPORAL CORTEX AND OBJECT RECOGNITION

In this section, I will review some experimental data and interpretive
approaches related to inferotemporal cortex (IT). This is the region - more accurately a
complex of several regions - most implicated in invariant object recognition and memory
formation, based on lesion studies and a long history of experimental work. The
experimental data reviewed in this section represents both classical and newer concepts
introduced above, with little consensus on the neural coding and representations
strategies evident at the time of writing.

Architecture of the Ventral Visual Pathway

Neuropsychology has long recognized two visual systems operating in parallel,
the so-called ventral and dorsal streams. Historically these have been considered the
what (ventral) and where (dorsal), with both assumed to serially proceed to higher level
cognition and motor input, but these distinctions have been revised somewhat (Milner
1999). The ventral stream provides visual contents of perceptual experience, and codes
information in form suitable for processes like imagining, recognizing, and planning.
The dorsal stream serves the immediate function of guiding actions from moment to
moment, and needs to code information in a quick, ephemeral and view-specific form.
The posterior parietal cortex is a major locus of the dorsal stream, with growing evidence
for several modality specific visuospatial coding systems; for example, separate systems
for the eye and the hand to reach to the same visual location.

Both streams are driven by the retina, proceeding through lateral geniculate
nucleus (thalamus) to primary visual cortex (V1, also called striate cortex; area 17 in cat).
Beyond this point, the streams separate, with the ventral stream terminating!> in
inferotemporal (IT) cortex. The following diagram illustrates this flow, along with the
connection to thalamic and brainstem regions; note that reciprocal connections between
adjacent pathways and subcortical regions are present:

151t is somewhat misleading to speak of the stream as “terminating”, given the multitude of
recurrent pathways; however, it is conventional to consider ascending (sensory) pathways and
descending (motor) pathways, and this is arguably the last stop in the ascending pathway.
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Fig. 10. Connections in the ventral pathway. From Van Essen, D. C., C. H.
Anderson, et al. (1994). Dynamic Routing Strategies in Sensory, Motor,
and Cognitive Processing. Large-Scale Neuronal Theories of the Brain.
C. Koch and J. Davis. Cambridge, MA, MIT Press: 271-299. Reproduced
with permission of MIT Press.

From V1, areas V2 and V4 perform further processing of form. V2 is known to
be involved in contour completion; neurons have been shown to respond to illusory
contours. V4 has recently been implicated in processing of contours; many cells showed
preferential responses to certain classes of spiral, concentric, or radial forms (Gallant,
Braun et al. 1993).

IT cortex encompasses posterior inferior temporal (TEO, pIT) and anterior
inferior temporal (TE, alT), which has a number of subdivisions including the superior
temporal sulcus (STS). Of course, these have connections to non-visual areas. IT cortex
has strong reciprocal connections to the amygdala (associated with reward systems and
with social and emotional cues), connections to hippocampus (via the entorhinal cortex)
and to prefrontal cortex. These connections are shown in the following figure; again
reciprocal connections between cortical areas are the rule.

56



PFC

Object Space

Fig. 11. Flow of information in subregions of IT cortex and connected
cortical areas. pTE and TEO are implicated in processing of features,
while aTE (anterior) is implicated in visual memory (ER = entorhinal,
HIP = hippocampus, PFC. = prefrontal cortex). Connections to
subcortical areas are not shown. Arrows represent reciprocal (feedback
as well as feedforward connections). From Nakamura, K. and K. Kubota
(1996). “The primate temporal pole: its putative role in object recognition
and memory.” Behavioral Brain Research 77: 53-77. Reproduced with
permission of Elsevier Science.

One important aspect of the ventral stream is increasing receptive field sizes, as
determined by classical single unit measurements. The following table adapts
information from (Wallis 1994) and Rolls (Rolls 1992) on receptive field size and
functional characteristics.
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Table 2. Receptive field sizes and characteristics of ventral stream areas.

area field width functional characteristics
alT (aTE) | 50° view independence
pIT(pTE) | 20° view dependent,
configuration sensitive feature combinations
V4 8° orientation and form processing
V2 3.2° form, color, depth strips
illusory contour completion (32% of cells sensitive)
V1 1.3° orientation, frequency, location;
movement direction in complex cells

Many neurons in IT fire at a slow spontaneous rate (3-4 spikes sec). Some of the
research reported below emphasizes modulations in this firing rate above and below the
background. A large literature exists on tuning properties evidenced by rate increases of
IT cells to preferred oriented gratings, Fourier descriptors, etc. and to specific objects;
many studies on preferential responses to faces exist (Rolls and Baylis 1986). For more
in depth reviews of classical single neuron IT studies see (Rolls and Treves 1998) and
(Logothetis and Sheinberg 1996). A review by (Nakamura and Kubota 1996)
encompasses single neuron data and a variety of clinical studies.

The following discussion presents a sampling of recent work, emphasizing
different approaches. Not surprisingly, I focus on work supporting temporal patterns and
synchronization which underlie the computational approach developed in the next
chapter.

Temporal Codes, Multiplex Filter Hypothesis, and Cross-Correlation

In a series of papers, a view of temporal coding via frequency modulation (the
multiplex filter hypothesis) has been advanced by a group at U.S. National Institute of
Mental Health. The earliest work (Richmond, Optican et al. 1987) examined single
neuron responses to Walsh functions, finding that information was conveyed by temporal
modulation of spike rates, based on an information theoretic comparison of principle
components with simple rate coding. They suggested that multiple dimensions of a
stimulus could be decoded from principle components of the modulated spike train. The
figure below illustrates the stimulus pattern and typical averaged response, with a set of
individual trials shown to give a feeling for the variability.
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Fig. 12. The mean response of one neuron to two different Walsh patterns A
and B, with rasters from individual trials plotted. Both excitation and inhibition
are seen, in agreement with data of Gochin and coworkers described below. The
bar height represents 50 spikes/ sec. The bar beneath shows the stimulus duration.
From Richmond, B., Optican, L., Podell, M. and Spitzer, H. (1987). “Temporal
encoding of two-dimensional patterns by single units in primate inferior temporal
cortex.” Journal of Neurophysiology 57: 132-146. Used with permission of
American Physiology Society.

In more recent work recording from monkey TE (anterior) in a behavioral
matching task (Eskandar, Optican et al. 1992), the same group found evidence that
neuronal responses encode information about both the stimulus and the memorized target.
In addition, local functional differences were found, with more information on the current
stimuli in IT gyrus, relative to the superior temporal sulcus which appears to be biased
toward target (memory) information. In concurrent modeling activity (Eskandar, Optican
et al. 1992), the output of a pointwise multiplicative model of IT neurons was claimed to
be a good fit to the recorded responses, suggesting that these neurons multiply temporally
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modulated waveforms arising from separate visual and memory systems in the
comparison step of a visual memory task.

Arguments Against Temporal Encoding

Other researchers remain unconvinced by evidence for temporal coding in
inferotemporal cortex. Tovee and colleagues (Tovee, Rolls et al. 1993); (Tovee and Rolls
1995) analyzed information available in varied short temporal epochs (100, 50, and 20
ms) of a 400 ms response series, and at different time offsets from stimulus onset. Again
using information theoretic methods, they claim that 20 ms gives 30% of the information
present in 400ms; the specific 20 ms interval chosen has little impact. More information
is available at the start of the spike train than at the end, based on their analysis.

I argue that we should not be completely convinced by the latter demonstrations,
for the following reason. If a cortical region is involved in the formation of a distributed
representation, information about the stimulus must be present at the beginning of the
computation in at least a subset of neurons contributing to the distributed representation;
in fact, if the neurons participate in a meaningful way in the computation or are recruited
into the distributed representation, the peak information about the stimulus readable from
a single neuron should be available early, even though the code used by the organism is
distributed and might require some recurrent cycles to form. Thus, the stimulus
prediction from an ensemble at a later time might still exceed the prediction that can be
obtained from a single neuron, for a wide variety of complex stimuli. Methodologically,
the neural response needs to be measured on a behavioral task and correlated with the
response to know whether the observed coding is actually the one used by the organism.

This is similar to the dilemma raised by Tsuda (Tsuda 1992), mentioned already
in the psychology review section. It is unclear if different operational epochs for learning
and recognition exist, or whether both are occurring concurrently; activity supporting
both learning and recognition may coexist, but rapid task context shifts will activate the
effective connections that allow one or the other to dominate. If the system is capable of
rapid learning and forming representations we might always observe computational
artifacts of the representation formation process, even though the representation and its
decoding (readout) are distributed within the region or by interactions between regions.

Combination Codes in IT Columns

In a series of papers based on single neuron recordings (Tanaka, Saito et al. 1991;
Tanaka 1993) and more recently optical imaging (Wang, Tanaka et al. 1996), Tanaka and
coworkers examined the response of single neurons and trends in localized regions to
stimuli of intermediate complexity. The methodology involves presenting progressive
simplification of images to obtain the exact combination of primitive features (within a
restricted object universe) which gives the maximum response over background rate.
The data supports a hypothesis of combination coding, that specific combinations of
features elicit responses in a small set of columns about .5 mm in area TE. Some of the
optical experiments showed that center positions of the active areas move systematically
with rotation of a face stimulus.
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Tanaka acknowledges that critical feature columns cannot be the whole story, as
the feature combinations could only represent a portion of complex objects. The spectre
of the binding problem is raised again; it appears in slightly different form for TE,
because the wide receptive fields will include multiple small objects, which must be
discriminated from each other while their component features are bound. He raises
possible solutions compatible with observations, including aperiodic synchronization,
attentional enhancement, or the formation of loops of activity back to earlier stages in the
ventral pathway (Tanaka 1996). He also notes that the optimal stimulus paradigm is
based on a rate code assumption, but he has no evidence against the hypothesis of
temporal coding.

Fig. 13. A schematic view of overlapping critical feature columns
hypothesized by Tanaka based on single neuron and optical recordings.
From Tanaka, K. (1996). “Representation of visual features of objects in
the inferotemporal cortex.” Neural Networks 9(8): 1459-1475.
Reproduced with permission of Elsevier Science.

Invariance vs. Broad Tuning to Specific Object Views

Logothetis and colleagues have examined single neuron responses to a variety of
objects rotated in depth, including paperclip stimuli similar to those used as recognition
targets in the present work (Logothetis, Pauls et al. 1994; Logothetis, Pauls et al. 1995;
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Logothetis and Sheinberg 1996). They found that many neurons respond preferentially to
a single or limited range of views of objects. Some responded both to a view and a near
mirror image, while others did not. Tuning of the neurons to preferred views was found
to be fairly broad. This data has been interpreted as evidence for RBF models as the
Chorus network described previously (Logothetis, Pauls et al. 1994); (Edelman 1999).
This is, of course, founded on the assumptions of rate coding and representation in single
neurons that guide the study; the substantial evidence contradicting these assumptions,
favoring temporal coding (or perhaps computation involving temporal modulations which
construct a code) and population representations, is not discussed in that review.

Activity During Delay Period in Matching Tasks

While the other work in IT cortex described so far involves examining responses
during the presentation of a stimulus, Miyashita and coworkers have studied the activity
in anterior ventral IT cortex during the delay period of a visual short-term memory task.
One of 100 possible fractal patterns is shown for 0.2 sec., followed by a 16 second delay,
with a second pattern shown for 0.2 sec. and the monkey required to choose “match” or
“no match”. Sustained increases or decreases from background rates were found in 95 of
144 cells. Of those, 77 showed variable frequency depending on the pattern, and many
showed strong activity to only a few patterns (Miyashita and Chang 1988). Further
experiments showed learning was crucial to generating the delay response; also, that the
optimal response was often to rather dissimilar patterns, but substantial correlation in
responses between successively presented patterns was seen (Miyashita 1988). Thus, it
seemed that learning produced a kind of temporal binding of observed patterns. This is
not surprising, since objects are observed from a series of viewpoints (as an animal
moves around a stimulus or manipulates it) during the formation of a view-invariant
representation.

These observations lend support to some models of object representation in the
literature. They have been interpreted by Griniasty, Amit and coworkers (Griniasty,
Tsodys et al. 1993); (Amit 1995) as evidence for the representation of objects as
attractors; they show similar temporal correlation in patterns presented to a symmetric
network with fixed point attractors. These are presumed to correspond to different sets of
active neurons, but with correlations between successively learned patterns. The Visnet
model of Wallis and Rolls (Wallis 1994); (Rolls and Treves 1998), is predicated in part
on a short term temporal association of different views, similar to the observations of
Miyashita.

It is less clear what role such delay activity should play in feed-forward
recognition models like Chorus, which to date have not addressed primed search or
matching tasks!©.

16 The Soca model advanced in this dissertation has also not yet taken on primed search in a
biologically realistic way, but I will attempt to sketch a strategy in the discussion section.
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Stimulus Inference From Ensemble Responses

Gochin et al. (Gochin, Colombo et al. 1994) found that 5 stimuli could be
inferred from a histogram of excited and inhibited responses of 40-50 cells in awake
monkey IT cortex. The response was a rate integrated over the interval 100-500 ms post
stimulus, rather than instantaneous statistics as in the present model. These results
suggest an ensemble coding interpretation in terms of histograms of numbers of excited
and suppressed units without regard to location. They found that reducing the integration
window to 100 ms reduced correct inferences from the ensemble; this is in direct contrast
to the results noted earlier by Tovee and Rolls on stimulus inference from single cells,
which peaked in the first 100 ms.

Slow Oscillations Correlated With Stimulus

Nakamura and coworkers (Nakamura, Mikami et al. 1991) have observed
oscillations in the anterior tip or pole of the temporal complex (TPv) , including areas 36
and 38, (areas not mentioned by the other researchers surveyed here). Neurons in this
region responded to complex stimuli (photographs) but not to oriented bars. In the
context of a visual memory task, the response of many neurons consisted of relatively
slow oscillations, in the range 3-28 Hz with most occurring in the range 4-7 Hz. For
some oscillating neurons, the oscillation frequency varied with the stimulus presented,
i.e. 3.3 Hz for stimulus A, 5.6 Hz for stimulus B.

This finding is particularly intriguing in the context of the theory and algorithms
I present in subsequent chapters. The computational model developed here identifies fast
oscillations with computation toward a certain goal (metricity over partition cells or
stimulus identity), and slow oscillations with modulations of synchrony; it predicts that
slow rates are one of the controlling variables which serve to define a dynamical
recognizer for a particular object. In memory tasks, these oscillations could play a role in
modifying the response of local groups during comparison operations against incoming
stimuli, perhaps allowing the activation of those TE regions observed by Tanaka.

MECHANISMS AND ALGORITHMS: A SURVEY OF THE NEURAL MODELING
TERRAIN

The previous discussion focused on experimental methods and relatively data
driven theory. I now turn to a brief discussion of modeling methods, many of which
proceed from a similar abstraction for the neuron and an assumption that it is the locus of
computation.

Modeling of neuronal processing is somewhat fragmented between various
disciplines and scales of modeling. Some research is very application and mathematics
driven, emphasizing proofs on the power and optimality of methods, with less regard for
correspondence with the data of experimental neuroscience. Other approaches seek
correspondence with higher level cognitive data and psychophysics, but not necessarily
data from electrophysiology studies.

Most contemporary neural modeling is carried out in one of four major styles,
with a certain amount of overlap between the camps.
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1. Detailed electrochemical level models for neurons, including compartment
models of dendritic processes, scaling up to small networks. Large networks (e.g. 10*
—10° neurons) may be addressed through heroic parallel processing efforts. Generally the
level of computation addressed is detection of features, or response to specific categories
of spike input. These researchers would self identify as computational neuroscience.

2. "Neuron" computing units with idealized transfer functions, with weights on
connections between neurons and possibly layers. The neurons may be connected in
recurrent patterns, i.e. with direct or indirect feedback. Researchers would in the main
identify themselves as connectionists or neural network researchers. In most recurrent
networks, the end state of the computation is a fixed point attractor, hence the
overarching term attractor neural networks. A new class of spiking network models has
emerged recently, with behavior and computational complexity intermediate between the
low-level models of computational neuroscience and connectionist models.

3. Models based on similar assumptions about single neuron dynamics as the
first two categories, but typically with time delays, mixtures of excitatory and inhibitory
nodes, or other parameters which result in oscillatory behavior, possibly including
chaotic or other complex forms of oscillation. The literature of such models can be found
under the topics neural networks, computational neuroscience, mathematical biology,
biological cybernetics, and biophysics. Since the computation and coding usually results
in dynamic or oscillatory states, these are sometimes called dynamical networks or
dynamical pattern networks.

4. Oscillatory models with non-monotic or chaotic transfer functions defined for
neurons or large neuron groups, with the oscillating units connected in regular spatial
patterns. Connections are usually modeled as coupling strengths rather than weights,
though in some cases these can function essentially as weights. The transfer functions for
the groups may be more complex than the widely used sigmoidal activation. The
concepts of excitatory and inhibitory connections often still appear, as in types 1. and 2.
This is something of an emerging research field; much of the publication is by
researchers in physics, centers for nonlinear dynamics and complex systems, and a few
centers of dynamical neuroscience. In electrical engineering, the term cellular neural
networks (Chua and Yang 1988) is used for very similar networks, with a greater
emphasis on analog computation.

The style employed here is closest in spirit to the third and fourth types. Both
types 3 and 4 have been described as statistical mechanics approaches. Physicists
developed the statistical mechanics strategy for modeling large ensembles of similar
elements. In this strategy, each state variable corresponds to the aggregate response of
many such elements, and each parameter in a model may also capture in a single number
a quantity arising from a distributed set of objects. For example, the bifurcation
parameters in the present models are interpreted as excitatory-inhibitory ratios or delay
time ratios of more detailed networks within each oscillating map site. Connections
between sites or units at this level are not intrinsically excitatory or inhibitory, in contrast
to connections between single neurons. The responses of populations should not be
thought of in terms of monotic activation, but are typically time varying; the distribution
of time varying response values over large population may be important. Silent sites or
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sub-populations may play an important role in perceptual or cognitive functions. This
concept of population coding has become well established in motor cortex, but has
advocates in the sensory and higher or associative areas.

These models can typically be related more easily to the experimental literature
of medium and large scale!’ electrophysiology than those of the previous categories.
Population responses may not be detectable in the response of single neurons which may
not fire in every “cycle”, and cycles will clearly be less evident in aperiodic population
responses. Yet if nonstationarities in the response — evidenced by changes in correlations
and synchrony at multiple scales — play a computational role, the modeler can use such
changes as hints toward the type of nonstationarities likely to be effective in a task. This
is the approach taken in the next section, where the linked observations of local aperiodic
oscillations and large scale changes in synchrony directly motivate the dynamics and
constrain the search space in a network.

NEURAL NETWORKS: AN OVERVIEW

I have now surveyed, albeit at a surface level, several research areas in system
level neuroscience. As noted, there is often a reciprocal influence between theory and the
experimental observations; but so far much of the discussion here has been data driven.
Now I will turn to some discussion of neural modeling techniques and concepts. The
goal here is to understand how these relate (or fail to relate) to the biology surveyed
above, and to situate the recurrent, time-varying chaotic networks that are the central
focus of the present work.

Activation Functions and Topologies

A network consists of processing units (nodes, cells) connected in some physical
organization or graph. Certain typical directed graphs or topologies have been studied,
such as feed-forward networks with hidden layers and recurrent networks (i.e. acyclic
graphs), with feedback connections from a unit to itself or to a unit or units upstream.

Each unit performs an operation on one or more input signals, sending the
resulting activation function value to its output function. While a wide variety of
functions have been studied, until recently the combined activation output dynamics have
been monotonic, i.e. the output function is strictly increasing with increasing (excitatory)
input. This is viewed as a natural model of rate coding, with most computational power
deriving from weights on input connections, specific topologies, and learning or self
organization processes which update weights. While units are disclaimed from
corresponding directly to neurons, it seems hard to escape the association of a unit with a
parallel pool which attempts to account for neuronal variability through averaging.

Historically, the monotic activation functions are not time varying functions on
the inputs. Recently some models incorporate delay between units, with resulting

17 By medium scale, I mean studies involving multi-channel spike studies, arrays of local field
potential macroelectrodes directly on cortex or optical methods. By large scale, I mean studies
involving scalp recorded multi-channel EEG or multi-channel MEG.
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interesting effects on dynamics and spontaneous formation of assemblies. Chaotic
behavior at the network level is one possible result.

Non-monotonic activations have also appeared in the literature. When used as an
associative memory, non-monotonic networks have been shown to have increased storage
capacity compared to a comparably sized network with monotic activation (Yoshizawa,
Morita et al. 1993).

For recurrent networks, one recent trend in research has been to investigate the
computational power of particular mapping functions (Pearlmutter 1990); (Moore 1998),
in terms of the formal language complexity class they are able to recognize. Holden and
coworkers proved that homogeneous diffusively coupled maps are less powerful than
Turing machines, and suggest that anisotropy (in connections, coupling, or evolution
rule) is needed to increase the computational power (Holden, Tucker et al. 1991). These
spatially distributed maps are the architecture I extend to nonstationary or staged
operation in a subsequent chapter; I am unaware of any similar investigations on the
recognition power of homogeneous but nonstationary networks.

Weights and Couplings

The numeric values which propagate between nodes are scaled by weight values
in typical networks; this naturally corresponds to ideas that learning takes place in rate
coded networks through slow modifications of synaptic efficacy (effectiveness). Many
models have also incorporated a concept of fast synapses, with rapid adaptation of some
or all weights in a network based on input or correlations in the network. Such fast
synapses are important in the formation of dynamic assemblies and correlation coding.

In networks with non-monotonic functions, similar scaling takes place on the
inputs to units. However, since small positive or negative changes on inputs may lead to
changes in the output of the opposite sign, the term weight is less appropriate. The term
coupling often appears instead, but conventions for mathematical notation for weights
and couplings are interchangeable.

Learning Strategies

Learning strategies are chiefly divided into supervised and unsupervised types.
In supervised learning, the desired output state of the network is known, and a teacher
signal must adaptively modify weights or other network parameters to match the output
state by an error minimization process. In unsupervised learning, the output state or
encoding of an input pattern is not dictated by the network designer, but is arrived at
through some means such as satisfaction of competitive constraints, or correlations
between previously activated paths and those activated by the current input.

Representation and Coding

A sparse code implies that activation of only one or a few output units is
significant. Distributed codes imply that the values of all output nodes are important. A
code is fully distributed if the values of all output units must be known, i.e. the
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distribution of activities is balanced for all possible encoded values. A code may be both
sparse and distributed, when the percentage of units active for each separate coded
element is much smaller than the total.

The term population code appears less frequently in modeling, but has been the
subject of some interest in experimental work and associated modeling. A population
code is distributed code in which the statistics of the population response code the
information about stimulus or the result of some computation, but not the activation
patterns of particular output neurons.

Functional Classifications and Putative Biological Roles

Apart from the basic distinctions on the basis of activation functions, topologies,
and of learning and coding styles, artificial neural networks have been categorized on a
functional basis. Rolls (Rolls and Treves 1998) describes several functional families and
considers their plausibility as biological models; there is considerable overlap with the
learning strategies. He also gives a set of constraints on plausible models for cortical
computation, based on anatomical criteria and psychophysics.

Pattern association networks use supervised learning. A particular input pattern
presented to the network gives a response through a feed-forward topology. A supervised
learning techniques (e.g. back-propagation of error) usually updates weights in layers
somewhat removed from the output stage where readout occurs. Rolls sees little
biological role for such networks, as they violate the local learning principle of his
cortical constitution: all factors determining alterations in synaptic weights to implement
learning are present in the pre-synaptic and post-synaptic firing rates of each neuron.

Autoassociative networks perform pattern completion. After training,
presentation of a partial or noisy pattern will recover the original trained pattern. These
networks are also called attractor neural networks, with the Hopfield network the earliest
and best known example. A large role for autoassociative networks, particularly for
episodic memory, is envisioned. Specific brain regions which have been proposed to
function in this manner are the hippocampus CA3 region and anterior inferotemporal
cortex (Miyashita and Chang 1988). An important issue for the biological validity of
attractor networks is the time required to reach an attractor (convergence time); according
to the analysis presented by Treves and Rolls, biological networks might reach attractors
as rapidly as 20 ms.

The third major functional type of network are competitive networks. The Self-
Organizing Map and Radial Basis Function (RBF) networks are included under this type.
Differential connections or initial weights distinguish input-output pathways; the
competitive aspect of the network results from strongly activated output neurons
inhibiting others. In the Self-Organizing Map architecture , associative modification of
active inputs to active outputs occurs during presentation of a pattern, increasing the
chance of future activation of an active set with similar patterns.

The RBF network is a hybrid type with a competitive hidden layer (but not
winner take all) feeding an output layer using supervised learning. Each hidden layer
unit has a Gaussian activation function, giving a maximum response when an input
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vector is centered at its weight vector. In his review, Rolls suggests that it is not clear
how Gaussian activation would be implemented biologically; however, recent
investigations of spiking networks indicate that spike arrival times can implement such
Gaussian units, and local learning based on pre- and post-synaptic firing times is possible
(Natschlager and Ruf 1998).

This concludes the list of network functional types surveyed by Rolls. He alludes
to the observations described above on oscillations in visual cortex and theories of
feature linking, but generally dismisses the binding hypothesis on the grounds that
synchronization processes would be too slow. His analysis assumes that direct
communication is required for synchronization. However, in the next chapter I will show
that, given a regular spatial arrangements of coupled chaotic oscillator units with uniform
parameters, synchronization may occur without direct connection between units simply
by deterministic dynamics tending toward synchronization, operating on similar local
configurations (i.e. oriented lines or contours) in the stimulus space.

While the three artificial network types presented map well to distributed rate
code theories, I have emphasized other temporal and population coding strategies, with
evidence for their existence in cortex presented. A correspondingly rich variety of
additional oscillatory or dynamic neural network models have been proposed by others,
which align more with ideas of temporal, population codes. I now briefly survey some
early oscillatory models and will focus on a few in more detail in the next chapter.

DYNAMICAL NETWORKS: OSCILLATIONS, CHAOS AND EXOTIC ATTRACTORS

Particularly since the recent experimentally driven interest in synchronization
and modulated synchronization, computational studies of many types of oscillatory
networks have been performed; recent workshop volumes include (Taylor and Mannion
1992) and (Brown, Levine et al. 2000). Different authors vary in their emphasis; some
focus on mathematical properties, others on biological realism,, still others on modeling
of perceptual and cognitive phenomena. I will emphasize modeling of perceptual
phenomena with oscillatory networks in the following chapter on dynamics and methods;
here I will note a few significant early efforts and surveys.

In an early modeling paper motivated by the experimental observations of
synchronized oscillations mentioned above, Mannion and Taylor discuss both binding
and separation of bound objects with oscillations, outlining parallel and serial strategies
for separation. Separation refers to the need to handle multiple bound objects in parallel.
The parallel strategy involves separating objects by frequency, while the serial strategy
involves time slicing the activity of objects (i.e. phase separation). They indicate that
little biological support for the frequency strategy (without specifying what prior studies
support or fail to support any segmentation strategy). Developing a firing rate model
with a regular spatial array of units producing sinusoidal oscillations, they demonstrate a
serial strategy of alternating phases (Mannion and Taylor 1992).

Grossberg, a pioneer of many network architectures for specific psychological
phenomena, published an early article on feature-linking with synchronous oscillations
[Grossberg, 1991 #6]. The next chapter will discuss several more recent variations on the
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theme of synchronization and segmentation of scenes. For now, I turn to other oscillatory
models emphasizing memory formation and perception.

Freeman and colleagues have implemented and refined over time a detailed,
multiple-scale network model called the KIII model; they have validate the model with
experimental results obtained in rabbit olfactory cortex and rats. The base organizational
units are the KO models for neural mass, having excitatory or inhibitory output. A K1 set
consists of mutually inhibitory or mutually excitatory pairs. These are incorporated into
KII sets with both excitatory and inhibitory elements. A KII set corresponds to the
activity of a recognizable anatomical unit in the mammalian olfactory system; the
olfactory bulb, anterior olfactory nucleus, and prepyriform cortex are separate KII sets.
Finally, a set of KII sets are connected in a regular spatial arrangement with feedback
pathways incorporating delay to make the KII model (Yao and Freeman 1990); (Kay,
Shimoide et al. 1995). The architecture results in spatiotemporal patterns qualitatively
similar to those observed in the olfactory system.

The Freeman group has historically employed numerical integration of ordinary
differential equations as a modeling technique; a recent reformulation of the model to the
discrete space and time, coupled map style was undertaken (Kozma 2000).

The olfactory system differs considerably from visual cortex of course, notably in
the lack of spatial structure in the input transducers. Other investigators have explored
the interaction of chaos, synchronization, and orientation sensitive structure at a similar
modeling granularity (i.e. the detailed neuronal models of computational neuroscience).
In a model with neurons of various orientation preferences in local pools with long range
excitatory coupling to other pools, Hansel and Sompolinsky established first the
important characteristic that synchronization between neurons of similar orientation
preference could occur in a few cycles (Hansel and Sompolinsky 1992). In later work
they have introduced inhibitory connections and modeled orientation tuning effects in a
visual cortex hypercolumn (Hansel and Sompolinsky 1996). That model exhibits time
varying orientation sensitivity and spatio-temporal excitation of intermediate neurons
when instantaneous changes to the input stimulus orientation are made, matching effects
seen in cortex .

Tsuda developed a network displaying complex, non-equilibrium temporal
behavior during the recognition or memory recall dynamics, and postulated many
possible cognitive functions for chaotic dynamics (Tsuda 1992). He has more recently
used the term exotic attractors to distinguish these from fixed point or periodic
oscillatory attractors. In his model, a Hebbian learning stage establishes attractors in the
network based on intrinsic phase correlations arising from input stimulus vectors. During
recognition, presenting one such learned pattern to the network through an alternate
pathway causes it to cycle through the previously learned attractors in a pseudo-random
order, with spurious transitional states between visits. This dynamical behavior serves to
semantically link previously memorized attractors into more complex combinations,
providing an alternative means of binding component perceptions into a composite
memory. Compared to the binding by synchronization proposals, Tsuda’s network seems
to have attracted less attention and criticism; this may be in part because the concepts and
dynamical behavior are unfamiliar to many experimentalists.
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SUMMARY

The various threads of research introduced above form a network of interrelated
issues, but were selected to underscore the following points

1. Neurons and local fields exhibit complex oscillatory behavior and synchronization
phenomena. These may be involved in computation and coding, in contrast to
computation and coding with rate coded and modulated “activity” networks. Using
such dynamics in support of algorithmic processing is a relatively new field, relative
to more established connectionist models employing the rate code assumption.

2. At neural and larger scales, “stages” of processing within the same regions and local
circuits are seen, in contrast to serial presentation from one computational stage to
the next. These are evidenced in several ways, from changing amounts of
information seen in different time windows, to differences in sensitivity based on
context, and changes in correlation structure. Interpretation of functional roles for
such stages is not very advanced.

3. Stages may be related to changes in the correlation structure observed in signals at
different scales and in the synchronization measures of larger scale (inter-regional)
networks. This provides a new way of interpreting the interactive role of multiple
regions observed in imaging in contrast to a serial presentation.

4. Oscillatory behavior may be aperiodic, which is characteristic also of coupled,
spatially distributed chaotic dynamical systems. The study of networks of chaotic
units is relatively new, but shows promise for modeling aperiodic oscillatory
phenomena. Synchronization increases with increased coupling of such systems.

5. Stages may be related to major operating rhythms; in the view of Basar (Basar 1998),
major operating rhythms (theta in prefrontal, alpha in occipital visual areas) control
the evolution of the faster bands. In agreement, I further suggest that this control
may be interpreted in terms of changing control parameters of nonlinear oscillator
arrays to perform specific computations. The computations often involve changes in
dimensionality corresponding to desynchronization and synchronization. This is in
contrast to classical gating, excitatory, and inhibitory control architectures.

6. Retinotopic maps of organized columns are the regular organization seen widely in
cortex. Network models of object recognition such as Chorus do not map to this
organization, instead using retinotopic arrays of feature detectors as a front end to a
specialized structural network. The model here uses a regular array of units to
perform a task traditionally considered part of high-level vision.

The network style described in detail in the next chapter, coupled map lattices, is

a relatively new (Kaneko 1986) approach to modeling spatially extended physical

systems, of the type classicaly treated with partial differential equations. In this emphasis

on spatially adjacent nodes it differs from some connectionist models, which do not have

a regular, localized spatial structure similar to the columns and hypercolumns of cortex .

By using discrete time iterations rather than differential equations, the couple map style is

closer to recurrent attractor networks in connectionism than to the detailed “small circuit”

dynamics of computational neuroscience.
Because of the computational cost, detailed small circuit models are often limited
to reproducing spike level input output, rather than approaching perceptual and cognitive
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phenomena. The efficiencies of coupled map modeling allow a direct attack on
perceptual problems, while retaining many characteristic aspects of biological neural
systems and signals. The gap between Marr’s algorithmic and implementation levels is
reduced, though the neural modeler still bears the burden to justify a particular map, like
the chaotic function used here.

Two additional differences with most previous work in similarity and object
recognition are in the relevant site of encoding in the network, and the nature of the
dynamics involved in the encoding. The feature detector class of neural models use what
has been called place coding, locating meaning in the firing rate of particular neurons.
This leads to the well-known binding problem and combinatorial difficulties representing
the large feature space.

Connectionist models use a distributed representation, typically sparse
distributed coding across a vector of output units. Still, the individual units are
significant (local or place coding) and the activation or encoding is usually sigmoidal.
Further, the network dynamics at the end of a recognition process are typically a one shot
response, or a stable attractor controlled by the network parameters (connection weights).

In this thesis, I use a population encoding across an array of chaotic units. This
encoding is in accord with the data and interpretations of Gochin et. al., with the chaotic
dynamics of the units resulting in aperiodic (frequency modulated) time series,
resembling their observations, along with the single neuron “temporal codes”
observations of Richmond et. al. Thus, there is some correspondence between the model
presented here and observed micro-circuit dynamics in IT cortex.

However, the correspondence between the Soca network and function of IT
cortex cannot be taken to be a literal one. The current encoding involves sampling of the
transient orbits of a nonlinear evolution process across the entire network at a particular
time in a structured, non-stationary dynamics. While such an instantaneous population
rate code is envisioned in Bullock’s list of possible codes, the readout and comparison
methodologies used here are very un-biological. In my recognition system, the statistics
of this sampled state are numerically compared with other such samples statically stored
in memory by conventional digital, algorithmic procedures. Such an instantaneous code
must be seen as an input to some other readout or memory formation process in a
biological system.
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Chapter 4: Dynamics of Spatially Extended Nonlinear Systems

As background for the experimental work in the next chapter, the fundamental
concepts of nonlinear maps and chaotic systems are now introduced, followed by
extensions to high dimensional systems, and particularly to uniform spatially extended
systems!8. The aim is not to rigorously develop the material, but to survey the field in
enough breadth and depth so that the meaning of the networks and algorithms treated in
this study becomes transparent. Many texts providing more depth in low dimensional
dynamical systems exist; Ingraham (Ingraham 1991) is a concise survey. To date, no
comparable surveys of high dimensional or spatially extended systems exist; furthermore,
terminology varies considerably across different disciplines. A special issue of the
journal Chaos with an introduction by Kaneko is one possible point of entry (Kaneko
1993), along with a collection of papers on various applications (Kaneko 1993).

There are two approaches to problem solving using complex dynamics. Given
the form of a desired outcome, search methods in the control parameter space can be used
without requiring deep understanding of the underlying dynamics. The treatment of
dynamics, then, is to provide the rational for the search methods and constraints on search
developed here.

The other approach involves analytical treatment of the problem so that exact
solutions, or at least bounds on the state space are obtained. At the time this project was
initiated, the prospects for analytical solutions to problems where the desired outcome
involved state distributions on sets of coupled oscillators seemed remote. Accordingly, I
hypothesized that search methods might prove effective, even in the absence of a strong
theory on bounds of the technique or direct solution methods; the results presented in the
next chapter support this strategy. However, techniques have emerged which might lead
to more direct solutions than the search methods used here. I will mention relevant
mathematical approaches briefly in this review so that it is a useful overview of the
evolving state of the art.

In the following discussion, many important terms from the literature of
dynamical systems are introduced. For the benefit of readers encountering this material
for the first time, these are highlighted in bold type.

ONE DIMENSIONAL NONLINEAR MAPS: DEFINITIONS AND TERMINOLOGY

A map is an iterated difference equation

Ste1 =1 (S)

where S is a real valued state , f is some function mapping S within a subset of
the real number domain R, and t is a discrete time step. Iteration implies that the result of
applying the function at time ¢ is fed back into the computation at to produce the result at

18 The term complex systems, to the extent that it is standardized, refers to spatially extended
systems.
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time 7+1. The sequence of states S',S%,...S™ by iteration for t=1,2,...T , is the image of
the map. The sequence of states preceding any state S' are the pre-image of the state.
The terms trajectories and orbits also appear in the literature for the sequence of states,
with trajectories used for continuous systems and orbits normally used for discrete
iterations.

Nonlinear maps use some nonlinear function!® f, resulting in diverse types of
asymptotic behaviors; these asymptotic behaviors are reached after a transient regime of
variable number of iterates. The duration of this transient depends on the exact initial
conditions as well as the exact function and parameters. This variety in transient length
and complex structured of the trajectories approaching a stable state, supports the
algorithms for forming representation spaces and performing pattern recognition tasks. I
will explore this structure by some simple parametric studies in the next chapter.

An attractor of a map is the asymptotic state sequence after many iterations, if
such an asymptotic state exists. The term attracting set or limit set is also used. The
basin of an attractor is the set of all pre-image states which converge to the attractor,
after some number of iterations.

One crucial distinction for a system is whether for a particular fixed control
parameter, different inputs converge to a single attractor or to one of multiple attractors.
For the logistic map used here, a single attractor exists for all input states, but the basin
structure and transient sequences leading to the attractor are highly variable depending on
the particular instantiation of the map (i.e. the exact value of the chosen control
parameters).

A dynamical system with multiple coexisting attractors can be used as a model
for perceptual and memory processes. Training a supervised neural network consists of
shaping the dynamics evolution of a network through its parameters such that the
attractor basins map input states into the categories (attractors) desired. This basin
structure can be considered as an intrinsic categorization by partitioning the input states
into categories corresponding to the attractors.

A well studied map used as a network node (cell, neuron unit, site) in the models
described later in this chapter is the asymmetric logistic map:

The equation for the asymmetric logistic map is

-10<S<10
00<b<20

where b is a bifurcation parameter; changing this parameter forces a structured
transition between phases following the sequence of attractor types, which are introduced
below:

fixed point — limit cycle cascade of increasing period and instability —
intermittency — chaos — {limit cycle cascade —chaos} ...

The changes in attractor type occur abruptly, even with smooth changes in the
parameter. The brackets and ellipses indicate that beyond the transition to chaos, there

S =157 |

19 A nonlinear function is one for which the solutions are not subject to the principle of
superposition, i.e., the solutions do not add linearly to generate a new solution .
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are windows of periodic behavior in the bifurcation parameter values surrounded by
regions of chaos, and this repeats infinitely.

A fixed point attractor is one for which every initial state leads to the same
value. A limit cycle attractor is a repeating state sequence of period P; all initial states
lead to the sequence, though the phase of the sequence (relative to time t modulo P) may
vary. A limit cycle attractor may also be referred to as a periodic attractor.

This state sequence is the simplest form of oscillation. In continuous systems
theory and circuit analysis, the conventional meaning of oscillation is a limit cycle or
periodic oscillation. In nonlinear dynamics, more complex aperiodic motion is also
referred to as oscillatory, which may be a source of confusion in discussions between
neuroscientists and nonlinear dynamics investigators.

A chaotic attractor is an aperiodic orbit which exhibits sensitive dependence on
initial conditions. A system can be more or less chaotic, essentially a measure of how
rapidly nearby initial conditions diverge. Lyapunov exponents can be computed for a
system as a measure of nonlinearity. Since the rate of divergence varies over the set of
initial conditions, a system is commonly characterized by the largest Lyapunov exponent
over the full range of possible initial conditions.

Typically the transition points between these phase regimes are visualized by
bifurcation trees for systems with one bifurcation parameter, or phase space plots for
coupled systems with multiple parameters governing transitions between regimes.

Time series (orbit) plots under various initial conditions, the bifurcation tree for
the map, and an example phase space plot are shown in the following figures.
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x(t)

logistic with b=1.20 , x1 init=0.5, x2 init =0.1, 60 iterations
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. 14. Time series or orbit of the map x,,, =1-bx,”> with x =0.5 and x

=0.1 initial states overlaid. The bifurcation parameter b set to 1.2, leading

to a stable period 2 attractor for any initial condition.
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x(t)

logistic with b=1.70, x1 init=0.5, x2 init =0.5001, 60 iterations
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Time series of initial states x1=0.5, x2=0.5001 superimposed with

bifurcation parameter b=1.7, beyond the transition to chaos at b=1.544.
The separation of initial conditions differing by .001 illustrates the
phenomena of divergence of orbits of nearby initial conditions. The
Lyapunov exponent is a measure of divergence (positive exponent) or

convergence (negative);
while the previous figure is convergent.
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Fig. 16. Bifurcation tree showing asymptotic states of attractors as the
parameter b is increased. 512 random initial points are chosen for each b
value and the logistic map is iterated for 100 time steps before plotting.
Where multiple state s points exist for the given b, a periodic, noisy
(unstable) periodic or chaotic attractor is present; the actual state values
are cycling between these y axis points as shown in the time series.

Depending on the value of the bifurcation control parameter b, the attractor state
sequence may be a single state (fixed point), periodic oscillation between a few states
(limit cycle), or a pseudo-random visitation of the state space points but within a bounded
area (strange attractor, chaotic attractor). Each of the attractor types can be considered as
a phase or phase regime of the dynamics, analogous to thermodynamic phase in
classical physical systems. These phase regimes are bounded by critical values of the
control parameters. When a control parameter is modulated to cross a point where
attractors appear or disappear, and in particular change their topological structure, the
crossing event is known as bifurcation. Bifurcations between qualitatively different
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regions of phase space, such as crossing the transition from limit cycles to chaotic
behavior, are termed phase transitions.

Bifurcations occur as stability is lost for the attractor. This manifests in slow
convergence time, and an increasing number of trajectories which lead away from the
attractor. As the bifurcation parameter is increased into the chaotic regime, the unstable
periodic orbits remain a controlling influence on the dynamics, effectively forming a
“skeleton” for the dynamics.

The evolution or motion of a chaotic attractor in one dimension can be
understood as cycling between sets of unstable periodic orbits (UPO); the emerging
theory of control in low dimensional chaotic systems depends on analytically identifying
such UPOs, and applying perturbations to the system to suppress chaos (Barreto,
Kostelich et al. 1995). The persistence of such UPOs in chaotic behavior may have
implications for the probability of reaching a particular state during the transient
evolution of a system, or on the temporal statistics of a time series. This area of
dynamics, particularly regarding transients, is not well characterized at the time of
writing.

In non-biological systems, bifurcation parameters are typically constant or slowly
changing with respect to the equations of motion. It is possible, and assumed by many
researchers, that rapid bifurcation is a key aspect of the performance of biological
systems.

SPACES, DIMENSIONS, MAPPINGS

At this point in the discussion, we must revisit the notions of space and
dimension which have already been introduced, albeit in the context of cognitive theories
of similarity as a space of features. Since I will return to that idea, but must use the term
space in the dynamics context, the distinction should be made clear.

In the definition of a map given above, I emphasized the discrete nature of the
process by using the term state. However, much of the theory of nonlinear dynamics —
and more generally topology, of which it is a branch — is formulated in terms of
continuous spaces. Indeed, the underlying space must be metric by the same criteria
described earlier. When referring to the evolution of dynamic variables in R™ the
dynamics literature normally uses phase space, indicating the space of the mapping
dynamics.

Space is also encountered in the context of spatially extend systems or networks
— here, it has essentially its commonplace meaning, with oscillating computational units
or cells located in ' (a line or ring) or N? (a lattice or torus). Networks can also simply
be defined on an arbitrary topology or graph, without reference to any embedding in real
space.

The term dimension must also be revisited. In the context of metric spaces,
dimensions typically refer to some measurement or feature, with objects represented as a
point (or perhaps as a subspace) in the space. For hidden layer neural network
representation spaces, the dimensions may be less directly related to the input; recall that
the output units of each RBF classifier in the Chorus of Prototypes system correspond to
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a dimension in the space of prototypes. In Edelman’s terminology, these can be
distinguished as proximal (representation) and distal (feature) spaces. In dynamics and
oscillatory neural network theory, dimension typically refers to the number of state
variables in a system of coupled equations, such as the number of units in a field of
identical connected units in a spatially extended system. There are additional measured
dimensions of the orbit itself, characterizing the dynamics and information flow
(Grassberger 1991).

We will also be interested in synchronization of oscillating units. In this case,
there may be a structural network dimension (the number of units) and an effective
dimension. When a network of coupled oscillators is fully synchronized, all units
evolve in parallel and thus behave effectively as a one dimensional system.

In the system described here, all of these senses of dimension must come up at
least briefly. In equations, I will follow the following notational convention: the variable
N will be used for the network dimension, while the variable £k will refer to the
dimensionality of the representation space. Effective dimensions will be mentioned but
will not require standard notation.

HIGHER DIMENSIONAL SYSTEMS: SPATIOTEMPORAL CHAOS

The logistic map introduced above is a typical discrete time nonlinear dynamical
system with a single state variable. However, this formalism can be extended to
networks of coupled nodes (cells, units) where each node has a real valued state. Such
networks are known as coupled maps. When coupled maps are arranged in a regular
spatial array, the term seen most often in current literature is coupled map lattice,
introduced by Kaneko (Kaneko 1989). Other investigators have referred to similar
structured spatial systems of nonlinear elements as cellular neural networks® (Chua and
Yang 1988), fractal chaos networks (Perez and Massotte 1987), cellular dynamical
systems (Abraham, Corliss et al. 1991). Due to the iterative or feedback network
topology on each node, these systems may be considered as recurrent neural networks
with non-monotonic or bifurcating units, and some investigators have described work
in those terms (Farhat and del Moral Hernandez 1996). Coupled map models with local
unit dynamics at the transition to chaos (known as the Feigenbaum accumulation point)
have been designated as Feigenbaum networks (Carvalho, R. et al. 1999), and were
investigated for utility in pattern recognition tasks by the present author under the name
chaotic reaction diffusion networks (DeMaris 1995). Related systems with discrete state
values, discrete time, and typically boolean mappings (transition functions) are known as
cellular automata; many conceptual tools applicable to coupled map systems have been
addressed in the cellular automata literature (Wolfram 1986). Some investigators have
directly analyzed transformations between the two system types (Chate and Manneville
1989).

20 Cellular neural networks (CNN) have been defined in a more general way to encompass both
continuous and discrete time systems; the term is more likely to appear in engineering literature
(especially circuit theory). For discrete CNN and CML I find no clear distinction apart from
terminology.
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For higher-dimensional and coupled map systems, the network state is a vector of
the states of the constituent nodes. The network attractor, if one can be said to exist by
virtue of sufficient coupling, is a sequence or image of this vector. For spatially
structured dynamical networks, a spatial pattern formation behavior?! at the level of the
entire network is evident, emerging from the cooperative and competitive interactions
between the patterns and dynamics in the coupled nodes.

This network-level pattern formation may be tuned by controlling the phase
regime of the individual nodes, the number of connections between nodes (neighborhood
size), the ratio of excitatory to inhibitory connections (for suitable activation functions),
or the coupling strength between nodes.

The original papers on spatial pattern formation in locally coupled map lattices
(Kaneko 1989); (Kaneko and Tsuda 1994) introduced many visualization techniques and
correlation measures to characterize the rich behavior in various parameter regimes. In
general, the long time behavior investigated by Kaneko is not applicable to the system
described here, and as argued in the neuroscience review, is probably not applicable to
rapidly developing perceptual processes. The present work investigates and uses only
brief transients (10-16 iterations), while Kaneko’s original simulations of locally coupled
maps examine the dynamics after 10,000 steps, omitting any consideration of the
transients.

The term attractor is sometimes used at the network level, but is generally less
useful for spatial lattice systems with weak or local coupling, where oscillations and
competition between clusters (oscillation modes, sites in the same state, attractor, or
basin) form dynamic patterns. The evolution of a network from an initial state under
relatively low coupling results in an organization in which patterns of continuing activity
between interacting cells are spatially bounded by "frozen" areas, in which the
neighborhood interactions reach a stable state. The local active areas are referred to as
domains, while the frozen separating regions are domain boundaries. In a sense, the
network organizes itself into sub-networks, with the activity pattern in a domain more
conventionally related to the definition of an attractor.??

Systems with strong random coupling or global coupling, in contrast, can be
shown to reach an attractor which may be equivalent to a one dimensional map; this
synchronization process is taken up later. Intermittency, or chaotic itinerancy, is a
phenomenon appearing in a small, weakly chaotic region of the parameter space, in
which the dynamic behavior is a blending or linking of unstable periodic attractors
existing in isolation in the more ordered regions of parameter space. Over time,
individual periodic attractors are separated by sequences of intermittent chaotic
transitions. This particular dynamics has been proposed by Tsuda as a supporting
mechanism for binding (Tsuda 1992) and may offer advantages as an associative memory

21 Kaneko uses the term spatial bifurcations for formation of separated islands or domains; I
would prefer to reserve that term for dynamical scenarios in which spatial patterns actually
influence local or global bifurcation parameters.

22 The concept of a domain as used by Kaneko applies only when the lattice has been iterated for
many (> 10,000) generations, so that transients have died out.
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which overcomes the limitations of previous parallel distributed processing networks
with respect to the issue of compositionality (the recovery of bound or integrated
features in a composite memory).

Various network or neighborhood topologies have been reported in the literature
on spatio-temporal chaotic systems. Network nodes may be locally coupled to adjacent
nodes, diffusively coupled to a small region of the lattice with connection strength
weighted by distance, globally coupled to every node, randomly coupled to a non-
spatially localized set of neighbors, or some blending of these conditions. The coupling
may take any functional form, including diffusive (multiplicative), difference or
Laplacian coupling, or time varying functions. Coupling may be symmetric or
asymmetric between adjacent units; it may be homogeneous over the spatial extent of a
lattice, or inhomogeneous. The terms uniform and regular have also been used to denote
homogeneous bifurcation and/or coupling.

Coupled Map Lattices

A coupled map lattice (CML) is a dynamical system with discrete time, an
extended field of state variables in discrete space, and continuous state. Of course, we
approximate continuous states with floating point values in map computations, so strictly
speaking chaotic attractors must all in reality be periodic with very high period. Kaneko
(Kaneko 1993) describes the generic CML modeling process for a physical system as
follows:

1. Choose a set of field variables on a lattice. Typically these variables represent
macroscopic (distributed) qualities, such as temperature, fluid velocity field, local
concentration of a chemical substance, or in our case neuron pulse density in a local
population.

2. Decompose a process into independent units, such as convection, reaction, diffusion,
etc.

3. Replace each unit by the simplest possible parallel dynamics on a lattice, consisting
of a transformation function at each lattice point or a coupling term among suitably
chosen neighbors.

4. Carry out each process successively. In the present model, this means that at each
iteration, a diffusion step is performed, then a reaction step.

The logistic map was originally chosen for its well understood properties rather
than any explicit biological motivation?? for that particular nonlinear function. The
equation is known to be numerically stable when the state (and perturbations or forcings)
are maintained within certain bounds, and the critical points where bifurcations occur are
known. The behavior of logistic maps in a toroidal lattice with both local and global
diffusive couplings has been extensively studied by Kaneko. These studies investigated

23 However, the range of the asymmetric logistic map [-1 to +1] could be appropriate for modeling
a process of modulation about a background average frequency. Some investigators of IT cortex
present evidence that modulations of the background rate in individual units (Richmond et al.) or
populations (Gochin et al.) predict the stimulus present. The zero value would be the background
rate.
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random initial conditions at each site. The pilot study leading to this dissertation
(DeMaris 1995) was possibly the first to explore the dynamics and resulting distributions
of a diffusively coupled logistic lattice with structured spatial data supplied as initial
conditions.

The specific steps used for image processing in the system developed here are as
follows. Note that the complete sequence of steps here is one iteration imbedded in one
stage of the larger computation.

DIFFUSIVE COUPLING STEP

S, (x,y) = (1=¢)S,(x,y) +

%[S,(x,y +1D)+ 8,y =D +S,(x+1,y) + S,(x - 1,y)]

where:d is the intermediate diffusion array, ¢ is the current time step, x, y are
the spatial indices of the pixel array S at the center of the diffusion neighborhood, S is
the state variable at each site of the shape array, and ¢ is the coupling constant restricted
to the range <0.0 to 1.0>.

The diffusion or averaging step is implemented as an 2-D filter with the
convolution kernel:

0 ¢/4 O
c/ld 0 c¢/4
0 ¢/4 O

where c is the coupling constant .
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Diffusion is followed by a squashing step, which insures that the state remains
bounded in the stable domain of the reaction step as described below:

S,(x.y) =1 -0)S,(x,y) + d,(x,y)
LOGISTIC MAP STEP
The second computational unit applied in each time step is the logistic map:

Spa1(xy) = 1= b(S,(x.y))

where S, ¢, x, and y are as stated above and where:b is the bifurcation parameter,
restricted to the open interval (0.0,2.0).S is restricted to the open interval (-1.0, 1.0).

The dynamics of the logistic equation are such that given any initial state, after
some transient number of iterations the system will reach a steady state attractor which is
fixed (low b), periodic with increasing cycle length and transient length, or chaotic
(higher b values). As long as the initial input states S representing an image are bounded
as described above the system will be numerically stable. In the periodic regime, the
iterations required to converge to the attractor vary from 1 to 100 or more; longer
convergence times are observed in the vicinity of the critical (bifurcation) points. This
phenomena can be seen in diagrams in the next chapter illustrating the evolutions of
transients as the bifurcation parameter b is scaled.
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Fig. 17. A pictorial illustration of the CML architecture. The logistic
equation is executed in each node of the CML. Each node implements an
iterative or recurrent computation, illustrated by the loop on the node
illustrated. b) A regular spatial lattice of such nodes is connected to
nearest neighbors, with the NSEW edges labeled averaging a scaled
fraction of the state value of their neighbors at each iteration of the lattice.
The illustration is intended to show how a contour of black “zeros” in a
background of white “ones” is diffused by the averaging process, then
transformed by the map. The sequential application of both operations is
one iteration of the coupled map process.
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Fig. 18. A snapshot in time of an evolving coupled map lattice. An ellipse
form with values .0001 on a background field of .9999 given as an initial
state is evolved through the diffusively coupled CML process described
above; a cyclic color map highlights distinctions between the state values
in the interval [-1,1]. The thickness of the ellipse indicates the
propagation of the diffusion wavefront, while the local spatial structures
show the effects of coupling and map operators to produce characteristic
local statistics for a particular curvature region.

Synchronization in Coupled Map Lattices

Several types of synchronization may occur in CML systems, given the different
phase regimes that the individual component maps and collective can operate in. If
individual units reach fixed points, the only possibility is totally synchronized, possibly in
different domains or clusters.

If individual units exhibit periodic oscillation, due to their local bifurcation
parameters or strong coupling, they may exhibit phase clustering, with P clusters
corresponding to the possible phase offsets in limit cycles of length P relative to time t
modulo P. If all units are in the same phase, they are defined as totally synchronized.

If individual units exhibit more complex (chaotic or itinerate) behavior, they may
be still be totally synchronized. Apart from such total synchronization, a variety of
synchronization types and clustering identification techniques are beginning to be noted
by investigators.

Partial synchronization is defined (Maistrenko, Popovych et al. 2000) in contrast
to total synchronization. For a set of units coupled in some graph, total synchronization
is defined as the case in which

‘sf - stj ‘ — (0, = ©The system of N units (N dimensional network) effectively

operates as a one dimensional map when synchronized.
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Partial synchronization, then is the situation where some units obey the
synchronization condition above while others do not. The network may be characterized
by clusters C1, C2, ...Cn < N, where N is the number of units. These may be spatially
segregated into contiguous oscillating domains.

For Maistrenko and colleagues, the emphasis is on clustering of units which
reach an asymptotic state sequence which falls short of full synchronization. In contrast,
another type of partial synchronization will be the focus of the rest of this thesis. Over
the time course of a dynamical evolution from an inhomogeneous initial state towards
synchronization, in either the full or partial sense of Maistrenko, we can consider the
distribution during the transient state as exhibiting partial synchronization.

If such partial synchronization is measured by sampling the dynamics (or simply
halting them, if such control is available), the differing rates of convergence of local
configurations to the asymptotic distribution can be used in information processing.

Clustering Phenomena in Globally Coupled Chaotic Maps

The dynamics of a coupled, spatially extended system of maps can no longer be
visualized as a bifurcation tree (the pitchfork diagram show above); instead, a phase
regime plane is used, where each point corresponds to a family of attractors of the same
type or mixtures of attractor types, and bounded regions correspond to phase regimes in
the entire network state space. In the more complex regimes described later, mixtures of
the simple attractor types (such as cycles and intermittency) may co-exist in physical
space, or move in the physical space of the network as traveling waves.

A schematic plot of the control space for a network of globally coupled logistic
map nodes, where each node is coupled to a mean field or average of all nodes at each
time step, is shown below. The axes of the plot correspond to local bifurcation
parameters, and coupling parameters between nodes. While the boundaries between the
network phase regimes are simple in this depiction, they can normally be very complex
and intermingled even for single map units, (e.g., the appearance of a period 3 window
surrounded by chaos can be seen in the bifurcation tree).

The structure of bifurcations is known as the route to chaos of a chaotic
nonlinear system. The individual logistic map at each site, with no coupling, cycles
through a period doubling limit cycle cascade, reaching the chaotic regimes at a critical
value b. The addition of spatial arrangemetnts and coupling to the low dimensional
dynamics picture complicates the description of dynamical structure. The intermediate
regimes for locally coupled maps are considered to have "frozen random" pattern
selection behavior in which domain boundaries form. Higher couplings produce larger
domains and ultimately a pattern formation behavior.

The globally coupled map has a toroidal collapse route to chaos. In this route,
the boundaries between the network phase regimes are monotonic with respect to the
control or parameter space. In globally coupled maps, domains are more unstable and
clustering is the dominant phenomenon.
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Fig. 19. The control plane and resulting phase regimes for a globally coupled
map lattice, after (Kaneko 1990). The line at 1.54 is the critical point (transition
to chaos) for an uncoupled map. The coherent or synchronized regime indicates
that all sites exhibit the same orbit. The numbers in the ordered and glassy
regimes refer to the number of dominant clusters, defined as those with basin
volume more than 10%. A cluster is a set of lattice sites oscillating in the same
attractor, though not necessarily with the same phase. Note that the even when
individual sites would be chaotic, strong coupling can enforce coherence and
complex behavior.

THE SOCA DESYNCHRONIZATION-SYNCHRONIZATION CYCLE: A TIME-
VARYING CML

Having assembled the conceptual tools underlying the network at the heart of the
hybrid pattern recognition system, I now describe the small extension of the classical
coupled map lattice. This extension, motivated by the experimental observations of
changing slow wave potentials and correlations (Bressler 1995), is shown in the next
chapter to increase recognition performance (both the recognition rate and average
recognition time) achieved in bounded iteration counts for a recurrent network. This key
extension is to use time-varying parameters, alternating between opposing epochs of
desychronization and synchronization.

Once again, the reader’s attention must be called on to note a subtle shift in th
meaning of synchronization, as it is used in a graph theoretical and statistical perspective
on dynamics; this will be explained in more detail in the following section. In this graph
theoretical perspective, desynchronization (broadening of the distributions) by loosely
coupled chaotic dynamics is followed by partial synchronization with more strongly
coupled chaotic dynamics.
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The two meanings of synchronization are closely related in a high dimensional
system. In my use of coupled maps for shape representation, the initial conditions are
confined to a small subspace of the phase space; this is synchronization in the new sense.
The chaotic dynamics, even in a strongly coupled system, will desynchronize in the sense
that for some transient period a range of time series will emerge through the
neighboorhood actions, whose correlations depend on the initial conditions but also
diverge in a pattern dependent fashion. When time series synchronization occurs — either
through temporary fluctuations in the transients, or through the gradual formation of
synchronized domain strutures — we will see the concentration of the system state in a
subspace again. This concentration may be apparent in instantaneous measurement of the
system state, or by examining time averaged occupancies of subspaces.

These operations take place in a homogeneous, orientation-sensitive array of
recurrent logistics maps. By homogeneous, I mean that the bifurcation and coupling
parameters are uniform across the entire array. By orientation-sensitive, I refer to the
spatial asymmetry in the coupling kernel (i.e. NSEW neighbors coupled, diagonal
neighbors uncoupled).
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Expressed in algorithmic form, the procedure is:

procedure synchronizationOpponentNetwork
image = threshold(downSample(readlimage)))
for iterations = 1 to t1
diffuselmage = filter2D(couplingMatrix,image)
image = logisticMap(diffuselmage,bl,cl);
end // Desynchronize stage
for iterations = 1 to t2
diffuselmage = filter2D(CouplingMatrix,image)
image = logisticMap(diffuselmage,b2,c2);
end // Partial Synchronize stage
end // procedure

Because of the variation in divergence and convergence times, a specific set of
bifurcation, coupling, and iteration time parameters {bl, cl, t1, b2, c2, t2} has a
characteristic response to any given image or family of images. Each image can be
considered as a set of overlapping initial configurations of size t1+t2; by the end of the
Soca process above, information about local configurations from a window of size t1+t2
is contained in each unit (pixel in the processing array). The set of initial configurations
comprising one image may be highly synchronizing for those parameters, while another
image may be less so less so.

The intuition behind the network operation is that images in some category are
considered as productions of a stochastic language on an alphabet o whose symbols are
local pixel configurations. We seek parameters for the first (desynchronizing) stage
which, for this language, have the appropriate divergence rate matching parameter
determined characteristics of the second (synchronizing) stage. The second stage must
have characteristically avoided regions of state space and state transtitions such that
images in the category will converge near a characteristic sparse distribution.

Similar images should result in similar output distributions, and the inherent
characteristics of coupled chaotic systems — divergence of nearby states with time under
low coupling, but convergence to synchronized or partially synchronized states with high
coupling — offer a potential computational framework.

This computational framework can be viewed in terms of dynamical recognizers
reviewed earlier. Alternatively, it can be described as a generalization of a problem in
graph theory known as the road problem; it also has similarities to Markov chains and
probabilistic finite state automata. These descriptive frameworks are briefly described in
the next chapter on representation and learning.

This interaction between the specific initial configurations on a shape boundary
and the dynamics is an example of cooperative processing. Cooperative phenomena, and
particularly pattern formation processes, are distinguished by Palm (Palm 1982) by the
following criteria:
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The phenomena arises from the interaction of a large number of similar components.
The laws governing the interaction of the components are local.

The dynamical laws are the same for all components.

The local dynamics should not contain the “symmetries” of the global pattern
evolving through the local interactions. It is usually difficult to predict what pattern
will arise from the local interactions.

B -

The essence of the activity flow in the present network is cooperative processing
mediated by the opposed processes of desynchronization and synchronization, hence it is
designated as synchronization opponent cooperative activity, or Soca network?4,

The table below indicates the particular network parameters investigated here,
selected from an expanded network parameter space of possible single layer CML
systems.

Table 3. Network Design Choices for the Soca System

Input Coupling Bifurcation Readout
Structure All cells Local Logistic partition cell
Diffusive occupancy of
all states in
diffusion
wavefront,
Spatial Homogeneous | Homogeneous | Homogeneous | All states
Temporal Initial Variable Variable Instantaneous
condition (one | “opponent” (opponent
shot) stages stages)

The entries in the table above represent parameters of network design using CML
derived systems. The set of choices shown are fixed constraints, within which an
evolutionary search proceeds to discover solutions to an object recognition problem. A
more ambitious evolutionary search could choose to optimize networks choosing
different alternatives for some or all of those parameters.

MACROSTATE VARIABLES AND MEDIUM SCALE NETWORK MODELS

Before proceeding to experimental methods and data, I now return to the general
topic of modeling biological networks with oscillators and synchronization phenomena.
The following sections serve two goals. The first is to highlight the history and
justification of such mathematical systems as neural models. Second, I mean to survey

24 The name is inspired in part by the admonition of Walter Freeman that neuroscientists need to
learn to dance.
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closely related work in networks oriented toward some specific perceptual modeling or
pattern recognition function.

As noted earlier, connectionist models have typically assumed rate coding and
monotonic activation functions, which correspond closely to the common assumptions of
transfer functions for single neurons, and to assumptions about multiplicative weighting
as the essential operator controlling network information flow. Some investigators are
more cautious, noting that units in connectionist networks may correspond to larger
structures. For example, questions raised regarding the reliability of single neurons for
rate coding suggest that a sigmoidal activation function unit might be better interpreted as
the average behavior of many parallel detectors converging on a family of readout
neurons (Softky and Koch 1994).

An alternative to modeling single neurons or putative “parallel averaged
networks” is to more directly model large scale dynamics, consisting of thousands of
neurons. This has historically been the domain of statistical mechanical (Amari 1974)
and oscillatory models. One of the first such oscillatory models still in relatively wide
use 2 was developed by Wilson and Cowan (Wilson and Cowan 1972); (Cowan 1974).
Continuous variables represent activity levels of excitatory and inhibitory sub-
populations, rather than activity of single neurons.

There is one crucial difference between the Wilson-Cowan (WC) model and the
use of maps to model oscillatory brain dynamics; while both maps and the WC model can
generate chaotic time series and be coupled in spatial aggregates, the WC model also has
“resting”, non-excited states. Since a map with chaotic control parameters is chaotic for
any input, there is no equivalent rest state. It would be possible to introduce additional
nonstationarities in the model, with a baseline fixed point attractors (and corresponding
bifurcation parameter) designated as a rest state. Input shifts the bifurcation parameter
to leave the fixed point state, perhaps with some decay to the resting state. In the
modeling here, I address this by simply ignoring “background” states beyond a diffusion
wavefront region of interest in the evolving pattern by omitting the highest bin count
when gathering the statistics. Given the current algorithmic “back end” recognition
process, the use of histogram functions intended for image processing would require
similar suppression of the rest state values even if a more complex input coupling and
evolution dynamic were used, without really contributing to the essence of the project.

When modeling physical or psychological phenomena with spatially extended
(field) dynamics, it is common for each variable in a field (i.e. each unit in a coupled
map lattice) to represent a quantity associated with an aggregate of microscopic units.
This kind of representation, originating in statistical mechanics or fluid dynamics, is
known as a macrostate variable. Temperature or instantaneous velocity of a fluid, for
example, are macrostate variables in the study of fluids. In neural modeling, the
macrostate variables are quantities like ensemble activation (average spike train
frequency of all units), temporal phase distribution, or ensemble average frequency (pulse
train density or spikes / unit time measured over the whole ensemble). Parameters in

25 Cowan cites earlier work by Buerle (1957) and Griffith (1963) as historically important in this
research stream; I have not encountered recent work citing them.
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equations may also be considered as macrostate parameters, indirectly capturing
quantitative effects of distributed aggregates like neurotransmitter fluxes, and excitatory-
inhibitory ratios of neural sub-populations, or distributions of delay times which induce
bifurcations in large networks.

Earlier the distinction was made between state variables and control parameters,
with the latter consisting of bifurcation and coupling parameters. In large scale models,
control parameters - especially bifurcation variables — generally will not have a direct
map to single parameters in the underlying micro-circuit model. In fact, bifurcation
variables can be interpreted as subsuming the effects of widely separated neural tissue,
such as cortical regions and sub-cortical nuclei, or long range connections between
cortical regions.

As noted earlier, the trend in interpretation of EEG signals and evoked potential
responses is as a signature of large scale coordination and control processes between the
regions that brain imaging indicates cooperatively produce computations. The sudden
step function change in network parameters above should be interpreted as an example of
such large scale control, where staged or periodic volleys from cooperating cortical or
subcortical regions effect this rapid change in bifurcation and coupling parameters.

The systems described here should be regarded as spatiotemporal cooperative
systems acting on vectors in pulse density space, with the step-function changes in
bifurcation and coupling parameters representing slower control dynamics implemented
by modulation from separate sub-populations. The control dynamics of bifurcation and
coupling at the population level supplement the traditional neuron level control dynamics
of gating, inhibition, and feature selection. These population level control dynamics may
be more easily correlated with MEG and EEG observables than the traditional control
dynamics acting at more local scales. In turn, they may produce neuron level observables
such as modulations in correlations of neurons engaged in a processing task. I will return
to this subject in the final discussion section.

The next section addresses the question of how the use of chaotic maps is
justified in terms of standard neuron models, without addressing questions of learning.

SYNCHRONIZATION PHENOMENA AT MULTIPLE SCALES

If a map is to be regarded as representing the aggregate behavior of a large
system of neurons, it becomes clear that we must explain oscillatory and synchronization
phenomena operating at multiple scales of the brain, from micro-circuits of a few neurons
to large networks. This task has been addressed by several investigators. In one such
study, Wennekers and Pasemann investigate coupled pools of sigmoidal activation
neurons with random diffusive coupling and a probability distribution of coupling
strengths. They found that for appropriate parameters the temporal behavior of the whole
system can be described by a single, low-dimensional equation (Wennekers and
Pasemann 1996). This is proven true asymptotically for long times and system sizes
approaching infinity. Even for fairly small networks (N=50 for two interconnected
pools) with 50% standard deviation in coupling strengths, a similar bifurcation structure
between the low dimensional system and the full network (average activation of all
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micro-circuit neurons) is seen. The network bifurcation structure has a period doubling
cascade leading to chaos, similar to the logistic map used here, but with the possibility of
multiple coexisting attractors for any given coupling between pools. Their work situates
itself as an extension of seminal work by Anninos, Harth and colleagues (Anninos, Beek
et al. 1970); (Harth, Csermely et al. 1970), and Palm (Palm 1982), which demonstrated
that threshold modulation in random networks leads to mean activity input-output curves
described by a single humped function.

In a series of studies, these earlier workers performed discrete time simulations
of random networks of threshold neurons of mixed excitatory and inhibitory types.
Parametric curves (reproduced below) of activity levels o resulted from studies of the
networks which varied the parameters shown on the following page along with a typical
activity transfer function.
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Network parameters affecting activity curve

h percentage of inhibitory cells

u"average number of synapses of an excitatory cell

w average number of synapses of an inhibitory cell
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Fig. 20. Activity at time step t+1 vs. t. Note that the form of these curves,
are single humped maps — the same input output structure governing the
logistic map. This illustrates one scenario to produce the input-output
form, characteristic time series and bifurcation structures by micro-circuit
models. Changing excitatory-inhibitory ratios and the firing threshold act
as the bifurcation parameters of this model. From Anninos, P. A., B.
Beek, et al. (1970). “Dynamics of Neural Structures.” Journal of
Theoretical Biology 26: 121-148. Reproduced with permission of
Academic Press.
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BIOLOGICALLY PLAUSIBLE COUPLING VALUES

A question that should be raised when thinking about CML systems as models of
medium or large scale neural dynamics is what, if any restrictions on the range of
coupling parameters should be considered as biologically realistic?

One position would be to consider anatomical data on the proportion of lateral
connections to recurrent connections in mini-columns as a bound, resulting in a smaller
upper bound (perhaps .03) than is typically found by evolutionary learning in my
experimental work. I would argue that such a restriction is unjustified, because the
underlying micro-circuit dynamics which regulate synchronization may not require large
numbers of independent connections, instead relying on more subtle mechanisms. For
example, spike doublet firing mechanisms have been implicated in long range
synchronization (Traub, Whittington et al. 1997). Thus the coupling strength should be
understood in terms of ratios along the continuum achievable by any such synchronizing
mechanisms. hese will of course depend on a non-zero anatomical connection density,
but need not bear any linear relationship with the lateral connection density.

REVIEW OF ANALYTIC RESULTS ON SYNCHRONIZATION AND ENSEMBLE
DENSITIES OF MAPS

The previous sections have covered the basic definitions needed as a basis for
understanding the dynamical network function for representation forming representations
and for pattern recognition. I will now briefly describe recent theoretical developments
which hold promise for future work on more direct computations of required parameters,
or for establishing bounds on the applicability of the technique. The algebraic treatment
of graphs, known as spectral methods, has been extensively developed since origninating
in 1972 (Donath and Hoffman 1972) for graph partitioning, with application to
integrated circuit design. Building on these techniques, Wu has established several
theorems on the lower bounds of coupling required for full synchronization on various
topologies of coupled map lattices (Wu 1998).

These results apply when the bifurcation and coupling parameters are
homogeneous or uniform. Three cases are treated.

For globally coupled logistic maps, coupling to the mean field exceeding a

1
threshold |1 - c| < Z guarantees synchronization.
For coupled maps in which each of N units is symmetrically coupled to k
1
neighbors with coupling E , the system almost always synchronizes for large k.

For coupled maps with uniform symmetric coupling on a connected graph of n
nodes, a region in the (b, c) parameter space results in full synchronization. The region is
bounded by the constraints

1
l-cm|<————, [l-cal<
sup, |Df | sup, | Df
of the graph (smallest nonzero eigenvalue of the graph Laplacian matrix, Df is the

H where a is the algebraic connectivity
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Jacobian matrix of the map function f maximum divergence over nearby points in the
map domain, and m = min(n, 2deg,,,,) for the graph.

Another result due to Wu is that for uniform discrete time maps with
homogeneous additive coupling (Wu 1999). For the case in which the connection
topology matrix has zero row sums, the dynamics of the coupled system after
synchronization is proven equivalent to some parameterization of the uncoupled map.
This result may have implications for efficient encodings which are generated from a
high dimensional system, suggesting that an encoding or matching process could generate
the effective dynamics with a one dimensional system. The proof does not hold however,
for diffusively coupled maps used in this thesis.

Synchronization per se is not a goal for the following description of a pattern
recognition system; on the contrary, in order to form a representation space, complete
synchronization must be avoided or the representation space becomes effectively one
dimensional, with little separation among object representations likely to occur even if
sampled prior to complete synchronization. One possibly use for these theorems would
be to set constraints for any learning or search process, since coupling values guaranteed
to synchronize may be unsuitable for the purposes of forming representations, if it occurs
rapidly.

THE TIME COURSE OF EVOLVING DISTRIBUTIONS IN ENSEMBLES

As noted, most work in dynamical systems focuses on the long time equilibrium
behavior of systems, in contrast to their transient behavior. One recent exception is work
on the evolution of densities (distributions) in ensembles of identical maps (Driebe 1999).

Driebe’s work takes the statistical mechanical viewpoint, studying the
distribution of states for an ensemble of identical maps over a distribution of initial
conditions. While the density concepts and the methods developed are also applicable to
equilibrium states, the work is notable in its emphasis on distributions during the transient
evolution toward the limiting equilibrium distribution.

Densities may be measured instantaneously over an ensemble, or over time.
Given the latter emphasis, complex motion (orbits) in low-dimensional chaotic systems is
naturally described by densities. Density means the occupancy of a region of phase
space, i.e. the fraction of the ensemble in a particular subset of the domain of the
function. Initial nonequilibrium density represents an ensemble of uncoupled maps with
different initial conditions (or perhaps just uncertainty about the initial conditions).

Behavior of orbits in a map and densities in an ensemble of maps may be
strikingly different. A typical orbit in a chaotic system looks qualitatively similar
forward and backward in time, even if the dynamics is non-invertible. In contrast
evolution of density is usually obviously time oriented. Thus density evolution is not
reducible to trajectories.

For non-invertible systems with chaotic trajectories, evolution of densities will
show regular behavior; for systems with regular (i.e. periodic) trajectories, the density
will mirror the orbit level. For chaotic maps, nearby trajectories diverge, while initially
different densities, over an ensemble of identical maps converge. Instantaneous densities
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of low dimensional systems may rapidly (e.g. only a few iterations) approach the
equilibrium density.

The evolution of densities is described by the Frobenius-Perron operator. The
spectral decomposition of this operator can be used to compute decay rates of correlation
modes (peaks in the Fourier transform corresponding to poles in the complex frequency
plane). The spectrum of an operator is the set (discrete or continuous) of eigenvalues of
the operator under consideration acting in a specified functional space, and is different for
different functional spaces. For uncoupled maps the distribution of a random ensemble
can be computed exactly at each time step.

For the purposes of the discussion here, the main message is the rapid evolution
of distributions toward an equilibrium value for chaotic dynamics; however, it is not
entirely clear if this rapid evolution applies to coupled map systems with highly
structured distributions. The relatively small number of lattice sites, strong peaks in the
initial distribution, and the constant perturbation from equilibrium states due to coupling
clearly result in stronger peaks in the transient distribution. If the density approach can
be extended to coupled maps (perhaps building on Wu’s approach to produce an
equivalent single map ) it may be possible to more directly construct a classifier for a
particular initial distribution characterizing some family of patterns to be recognized. For
now, adaptive learning methods, such as I use in this thesis, seem to be the only practical
approach.

SPATIALLY EXTENDED DYNAMICS, TRANSIENTS, AND SYNCHRONIZATION:
NOTES ON THE LITERATURE

In this section I will survey additional literature exploring nonlinear oscillation
dynamics in vision, pattern recognition and other engineering tasks, but which is
somewhat tangential to the main thread of shape representation and similarity.

Conceptual Ties with Cellular Automata Literature

The fields of cellular automata (CA) and random boolean networks were the
better established “parent” disciplines which spawned work on coupled maps (Wolfram
1986). Both share discrete time and space iteration, with most work employing
synchronous update at all cells. CA and coupled maps systems differ only in that CA
typically have boolean or small integer state variables, with boolean transition functions.
Coupled maps use on or more real-valued numbers as state values, and use algebraic or
piecewise-linear functions as update rules. Transients in cellular automata have been
studied more extensively than in continuous dynamical systems or coupled maps;
methods for creating appropriate structure of the attractor basins (i.e. the transients
leading to an attractor) have been derived by Wuensche, but these computations have no
obvious mapping to biological dynamics (Wuensche 1996).

The concept of time-varying spatially extended dynamics was proposed by
Wolfram in the context of cellular automata (Wolfram 1986). A slow lattice controls the
rules governing the update of sites on a fast lattice. Wolfram informally describes several
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strategies for pattern classification with such systems, covering some of the same ground
described earlier by Rosenfeld (Rosenfeld 1979).

Pattern formation phenomena are the major object of study in CA, but are
typically not considered as synchronization; however, results (reviewed in an earlier
section) on problem solving strategies involving regular domains (Hordijk, Crutchfield et
al. 1998), (Mitchell, Crutchfield et al. 1996) may be possible to recast in terms of
synchronization. The essential difference is that n-blocks (words or spatial
configurations) in CA play the role that discrete phase space intervals in a single cell
play in coupled map lattices. Measures on block statistics and correlations replace
measures on occupancy of phase space regions. Cooperative pattern formation processes
are the essential characteristic in both systems.

Pattern Processing in Coupled Maps

Work on the processing of spatial patterns by arrays of chaotic units has been
performed by Farhat and del Moral Hernandez (Farhat and del Moral Hernandez 1996).
The standard symmetrical logistic map formulation is used for units, with the state
variable interpreted as phase in the interval [0,25t]. They interpret the map as a model of
spike processing in a single neuron, in contrast to a large scale network as in most other
work reviewed in this section. One notable aspect of this work is that the coupling
function between cells is itself nonlinear; two variants of coupling are proposed. One is
an exponential function of input, the other a series quantization thresholds against this
exponential function. Quantization (binning) results in a loss of smoothness in the
characteristic pitchfork bifurcation diagram of the coupled maps, producing instead
constant values until bifurcation points. The quantization is interpreted as different
neurotransmitter release characteristics, associated with different presynaptic activation
levels.

In their demonstration of pattern processing, piecewise linear activation values
are applied as bifurcation parameters to an input logistic ring, which is coupled to a
second processing layer via the nonlinear scheme above. Coupling between elements is
homogenous. It is shown that after long transients (1700 cycles in one example) for some
input patterns the dynamics may collapse to clusters of periodic attractors. The number
of clusters is much smaller than the array, i.e. 6-7 clusters in an ring of 100 chaotic units.
It is suggested that this convergence to clusters of periodic attractors for “coherent input”
may be interpreted as recognition and classification of the input, while inputs which are
not recognized remain incoherent.

As noted in my review, research in IT cortex, the putative site of object level
feature recognition, has not turned up obvious periodic oscillatory dynamics fitting this
hypothesis at the single neuron level, but neurons could be participating in larger scale
aperiodic oscillatory dynamics. However, the large number of iterations required seems
inconsistent with rapid processing. The correspondence of an iteration cycle with
particular micro-circuit parameters is not developed in the paper, but even if it
corresponds to recurrent processes in dendritic spike processing 1700 iterations seems a
heavy burden to justify biologically.
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A fully connected network of quadratic maps with period doubling route to
chaos has been studied by Carvalho and coworkers (Carvalho, R. et al. 1999). A baseline
bifurcation state at the critical transition to chaos is chosen, with a correlation learning
rule based on the response to input. They note that uncoupled dynamics at this transition,
while not chaotic in the + Lyapunov sense, consists of an infinite number of unstable
periodic orbits; when coupling is induced between units, some of these are stabilized,
resulting in a characteristic distribution over a set of high period orbits for the learned
input pattern. This stabililization is observed for a fixed initial condition prior to
presentation of patterns and is measured after 2x10" time steps.

Robert Gregson has, over the course of many years, explored nonlinear models
of psychophysical phenomenon and collected the results in two monographs (Gregson
1988; Gregson 1995). Some of this work has utilized spatially extended or field models,
designated as (nxn) I' models. These are notable in the present context because many of
the studies also deal with low numbers of iterations, thus are essentially exploring the
computational correspondence of transient phenomena with psychophysical events.
Also, Gregson introduces the notion of cascades, a set of n recursions in a lattice; the
output of this system is fed back to the input for an “outer loop” of some number of
iterations. In this model, the initial “stimulus” variables are not the state variables but
rather gain values affecting the evolution of an autonomous complex variable; in the
outer loop, the output of one such cascade is used to control the gain in a subsequent
cascade. Gain in the n-I" system serves as a bifurcation parameter, so the system as a
whole is non-stationary and effectively auto-bifurcating in my own terminology
introduced in a previous thesis (DeMaris 1995). That specific kinds of computations are
effected by bifurcation changes on a slow scale relative to evolution equations is a major
commonality with the present model 2°. Gregson has modeled spatial vision
phenomenon such as the Muller-Lyer illusion, using total iteration counts under 100. He
makes many points which I arrived at independently; that nonlinear evolution equations
are a “total system analogue”, rather than corresponding to any local (retinal or cortical)
neural sheet. Also, in contrast to earlier field theories (Ratliff 1965), there is no reliance
on opposed excitatory and inhibitory influences. Like the network dynamics explored
here, Gregson notes that coupling connections between these nonlinear field units have
no obvious interpretation as excitatory or inhibitory.

The phenomena of ambiguous perceptions has been of great interest since the
earliest days of visual psychology. The spontaneous switching of the images such as the
Necker cube is clearly a dynamical phenomena, and the apparent instabilities might be
expected to shed light on perceptual processes. The literature on Necker cube
psychophysics details interactions between eye movements and switching events, as well
as interactions between scale, orientation, and the distribution of switching times. In an

26 Because of this emphasis on transients, Gregson’s approach must be acknowledged as a key
precursor of my work, though the original impulses for my investigations came from other work
outlined here; due to terminology differences I only realized the similarity of CML with his
“cascades and fields” approach after personal communication with T. Henmi, comparing our
respective work on Muller-Lyer illusions and attempting to combine aspects of both.
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earlier study motivated by these complexities, I modeled the cooperative formation of
monocular depth fields and attentional foci using a multi-layer CML model, mixing two
locally coupled lattices with a globally coupled lattice. Scale changes in the cube led to
changes Scale changes in the cube led to changes in the distribution shape conforming to
psychophysical trends. A low dimensional dynamical model by Kelso et al. previously
linked interactions between reversal rates and distribution shapes, but did not provide
details of interactions between spatial forms and coupling, or account for attentional
correlates (Kelso, Case et al. 1995).

Input layer
Primal sketch figure is injected to a
CML 1 local diffusively coupled CML. The
s state values at this site drive 2 other
layers.

Attention layer

] Form mediated fluctuations between

CML 2 A / chaotic and periodic oscillations generate
— spatially localized attention events and

control organization of depth field layer

by coupling to depth layer.

[7/]

Gestalt (depth field) layer

S| Coupling modified during attention
GCM 3 : . Lo ST
events, influencing spatial distribution
of clusters.

Fig. 21.  Schematic of a network modeling formation of monocular depth
fields with multiple CML layers. The labeling on the states indicate the
nature of couplings between layers; i.e. state fluctations in layer 1
influence bifurcation parameter in layer 2. From DeMaris, D. (1998).
Pattern formation in spatially extended nonlinear systems: toward a
foundation for meaning in symbolic forms. !st. Intl. Conf. on Anticipatory
Systems, Liege, American Institute of Physics. Reproduced with
permission of Lawrence Erlbaum Associates.

Segmentation and Synchronization in Coupled Oscillator and Coupled Map
Systems

Coupled oscillator and coupled map systems have by now been investigated as
models of several perceptual tasks and phenomena. Segmentation, the task of identifying
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object boundaries and separating a scene into object tagged regions, has received the
most attention. A few of these studies are relevant because of their intrinsic interest in
the context of computing with synchronization processes, and also in that practical work
in computerized scene analysis demands that several tasks be solved nearly
simultaneously, such as the discrimination of object boundaries and the recognition of the
objects demarcated. Successful segregation of objects is assumed in the computational
work here, but in future engineering systems or more complete biological models these
tasks may be combined; happily it appears that the synchronization framework, and
chaotic synchronization in particular can support both tasks.

Peréz applied self-organizing responses at the local cell level in an
inhomogeneous coupled map lattice model, using the evolution statistics of a "spin" order
parameter as a discriminator of irregular structures in a regular background in a
semiconductor defect recognition task (Perez 1988). By self organizing, I mean that the
bifurcation parameter at each time step is a function of the state of each cell; this is
further regulated by a local spin-correlation measure, which is essentially a measure of
synchrony. Spin is defined as a difference measure from one time step to the next;
positive increments are spin up, negative spin down. Thus neighboring cells with similar
time series derivatives are stabilized, leading to segmented spatial activity domains
corresponding to manufactured shapes regions and defects.

Price et al. (Price, Wambacq et al. 1993) used a coupled map lattice forced by
damped sinusoidal modulation of a sample image for texture segregation, with results
comparable to other approaches. Particular strengths claimed for the technique are
relative insensitivity to the dynamic range and contrast of the original signal, avoiding the
tuning usually associated with adaptive filter approaches, and the ability to effectively
overcome the classic paradox of region segmentation in noise: how to smooth noise
without blurring essential features. More recently, two groups have presented work on
segmentation with continuous formulations coupled oscillator models. A system based
on simplified Wilson-Cowan Oscillators with local spatial coupling has been developed
by Campbell and Wang, with a particular emphasis on fast-synchronization,
demonstrating that a network of several hundred oscillators in a one dimensional chain
can be entrained in a single cycle (Campbell and Wang 1996). Coupling is dynamic, so
that once groups are synchronized the coupling disappears. A special long range
connection “global separator” unit acts on all local units to desynchronize oscillations by
adjusting their parameters; this effect can be overcome by sufficiently strong local
diffusive coupling, giving rise a sequence of activations of objects in connected regions.
The state variables of the system are activity levels, with different objects represented by
phase separation in time, with some clusters active while others are silent. Up to nine
objects could be represented and separated by the system.

Another group has focused on overcoming what they term the “Synchrony -
Desynchrony” dilemma, resulting from conflicting requirements for synchrony of
oscillators coding the same object and desynchronization between clusters coding for
different groups (Zhao, Macau et al. 2000). Like Campbell and Wang, they used
Wilson-Cowan oscillators, but with Laplacian (2" derivative) coupling between
oscillators, and with the parameters of the system such that chaotic oscillations result.
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They claim that this allows effectively unlimited segmentation. It does so, however, by
increasing the complexity of read-out of the encoded segmentation. Their procedure for
identifying objects in the oscillating field involves observing which sets of oscillators
visit a particular phase space region (Poincaré section) simultaneously. Since the chaotic
trajectories of different clusters may coincidentally cross the section simultaneously, a
decision on the assignment of groups is not made until 3-4 such simultaneous visits are
made within a particular time interval. By that time, sensitive dependence is presumed to
have separated the trajectories sufficiently.

Finally, I highlight another study using the coupled map lattice formalism to
perform segmentation which goes further than most in seeking psychological plausibility
by fitting psychophysical data on ambiguous perceptions (van Leeuwen, Styvers et al.
1997). As part of that project, a numerical study of C.; , the critical coupling value
leading to synchronization between two maps over a range of random initial conditions,
against the bifurcation parameter was performed. The relation is not strictly monotonic,
but does generally show increasing C; for increasing b parameter. C.; Values in the
range .16 to .25 appear in the chaotic bifurcation regime.

In the network of van Leeuwen et al., the presence of a signal in the input field
reduces the bifurcation parameter of the map to the minimum of the specified range. The
background state of the network is uncorrelated, chaotic oscillatory activity.

Coupling is adaptive to a smoothed difference measure between coupled nodes
in this model, with weights scaled by a sigmoidal function of the difference function up
to a maximum coupling. Therefore, spatiotemporal patterns of synchrony are achieved,
with varying stability depending on the parameterization. With the addition of on axis
directional preference to weight adjustments, switching between alternative Gestalt
organizations is in evidence, with the distribution of switching times qualitatively
matching psychological data. It is noted that this distribution is obtained with only one
free parameter. A numerical study determined the critical coupling values leading to
convergence over a range of random initial conditions vs. the bifurcation parameter. The
relation is not strictly monotonic, but does generally show increasing C, for increasing b
parameter. Values in the range .16 to .25 appear in the fully chaotic regime.

SUMMARY

The evolution of states in arrays of coupled discrete oscillators is a rich source of
phenomena, ranging from attractors of various types, synchronization and clustering,
complex transient structures, and spatial pattern formation. For the diffusive coupling and
low iteration counts used in the present work, a few simple trends are evident. Increasing
the coupling across a lattice decreases the effective dimension and nonlinearity; units
which would be chaotic if uncoupled will become synchronized chaotic (for high b
parameter) or even periodic with high coupling. The dynamics of response to structured
inputs, used as either initial conditions or to modulate bifurcation or coupling parameters,
is relatively unexplored.

Chaotic dynamics can be produced in small circuit neural models and larger
ensembles through a variety of underlying pathways. Given the aperiodic, stimulus
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linked rate modulations and changes in correlation seen in biological networks, to study
the dynamics of coupled chaotic systems seems a natural direction for neural modeling.

A researcher familiar only with the well known principles of low dimensional
chaos — the resemblance of chaos to noise, the sensitivity to initial conditions - might
dismiss the relevance of coupled recurrent chaotic systems as a model of neural
processing. The added complexity of spatial interactions and coupling, however, can
push a CML system either towards linearity (i.e. regarding the temporal or instantaneous
statistical response to input), or may provide the substrate for very complex
computations, such that correlations between input patterns and measures of the system
response become useful tools for neural system design.

To date, very little research has gone beyond pure dynamics studies to perceptual
modeling or pattern recognition with chaotic or periodic oscillatory systems.
Segmentation is the most well studied area, and I have reviewed several recent
contributions from other investigators.

In the next chapter I investigate the ability of oscillatory systems to rapidly form
responses to spatial forms. I begin with the parametric study of transients in coupled
logistic maps to spatial forms, and ultimately demonstrate a system for recognizing 3
dimensional objects from their 2 dimensional silhouettes. The demonstration shows that
if the assumptions of place coding are abandoned, coupled map systems can serve as the
physical substrate for algorithmic approaches ranging from the classical (e.g. metric
spaces) to more modern (e.g. view based normalization).
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Chapter 5: Representation, Learning, and Recognition

The aim in this chapter is to discuss how the dynamics of coupled maps, with
their intrinsically complex transformation of an input pattern, contribute to the forming of
representations. Given a scheme for representation, which I have argued is plausible
from both biological and classical pattern recognition viewpoints, an evolutionary
learning process is outlined which is intended to achieve that representation.

A few concepts from formal language theory, Markov chains, and probabilistic
finite state automata are used in the following discussion without formal introduction. I
have included appendices outlining basic concepts in these fields.

CODING AND REPRESENTATION

In neuroscience and neural network theory, the words coding and encoding are
used in a variety of senses, often different than their usage in communications
engineering. In the latter, coding normally indicates that for some data stream, a set of p
symbols is replaced with q symbols in an alternate, usually smaller alphabet — the code.
This is the encoding process, undertaken for a variety of purposes including data
compression, error detection and correction, or satisfaction of certain constraints imposed
by the operating characteristics of the channel or the decoder. Codes are normally
invertible by some decoding process, indicating that the initial stream can be recovered
exactly.

In both natural and biological neural networks studies, representation is a more
appropriate descriptor of the transformation process than coding. However, If the
representation involves a reduction in dimension from an initial encoding of some input,
but can reconstruct the original input, we can properly speak of it as an invertible code.

In biological studies, the term code is often used to indicate that an external
observer is able to discriminate between a small set of stimuli by observing a spike train;
the neuronal discharges are then thought to realize a one-to-one mapping from a set of
input states to distinct output states. This fits nicely the hypothesis of neurons serving as
detectors, sampling and coding a single variable, and has allowed a good deal of analysis
of coding in low level vision. It is often less clear in what sense the stimulus relates to a
complete alphabet®’, a set capable of representing all recognizable stimuli, and whether
some downstream receiving neuron uses the spike rate as a code, even when some form
of correlation exists between the rate and the stimulus. Moreover, the previous
discussion on non-classical receptive fields should caution us on accepting that
assumption without careful scrutiny, and to consider alternate interpretations of the spike
trains.

27 The exception is when the stimulus set is a complete basis set, such as the Walsh functions
used by Richmond et al. . Then all possible input stimuli of a given resolution are covered; this is
a desirable property.
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For example, there are indications from the auditory system that neurons code
more efficiently for natural stimuli, due to nonlinearities in their response which match
the correlation structure of natural stimuli (Rieke, Bodnar et al. 1995). This indicates
that the code is not a linear combination of some basis set.

PARTITION CELLS AND SYMBOLIC DYNAMICS

The idea of coding sketched in the previous section presupposes discrete symbols
and alphabets. How are we to bridge the gap between the real valued states and complex
temporal evolution of the logistic map units and the world of discrete symbols? The field
of symbolic dynamics has been developed to address precisely this issue.

The orbit T of a map specifies a sequence of points in the phase space. Suppose
that we quantize the phase space into a number of equally sized regions. Now, any point
in phase space is identified with exactly one such region, known as a partition cell.
These cells can have labels corresponding to an alphabet A.

Every (partial) orbit T in this dynamical system can be considered as a sequence
of elements or a word in the language A*. The set of all sequences generated by the
system T, along with a given partitioning is a language L.

This simple coarse-graining idea allows complex dynamical systems to operate in
the symbolic realms handled by formal language systems, automata theory, and by neural
networks utilizing local coding. As one example, symbolic dynamics gives an alternative
“negative” procedure for defining a formal language: a language may be defined simply
by enumerating forbidden words, i.e. sub-sequences that may not appear in the output of
a dynamical system.

In neural networks operating within the localist, rate coding framework,
activation on a particular output unit is typically interpreted as some form of coding. For
high dimensional systems of coupled maps (model oscillators), the natural equivalent is
to consider the population (occupancy) of a partition cell as an activation state. By
normalizing this occupancy by the total number of cells, a distribution over all maps can
be used as an output vector with real values. This allows even those sites inhabiting
phase space intervals corresponding to reduced firing rates to play a role in coding.

Recall the distinction between Marr’s concepts of the computational and
algorithmic levels of description in a vision task. We can now see that a computational
level process - the view interpolation and normalization strategy of Poggio and Edelman
described earlier — can be remapped into a different algorithmic level, with
correspondingly different assumptions about the underlying primitive physical elements.
In the algorithm applied in this study, computation and coding arises from
synchronization processes, resulting in coding across partition cells in the state space.

The underlying units of activity corresponding to each lattice sites are ensembles
of neurons which cooperate to produce the synchronization process, at both local and
distributed scales. Modulations in bifurcation and coupling, at the CML level of
abstraction, arise from the interaction of underlying time varying micro-circuit
parameters, or the influence of distributed modules whose rhythmic impulses affect these
changes. To study the problem algorithmically, however, these underlying causes need
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not be specified in detail; the dynamics and state flows are sufficient to capture the
essential operation.

FORMING REPRESENTATION SPACES WITH PARTITION CELLS

We have now covered the relevant material to introduce an essential feature
distinguishing the approach to pattern recognition developed here from the other methods
reviewed. The dimensions in which representations are formed and distances between
objects are computed are defined by partition cells in the phase space. The
representation of an object as a point in this space is based on some statistical
measurement of the trajectories occupying particular subspaces. This is in contrast to
dimensions corresponding to individual features as in classical statistical approaches, or
associated with individual units as in feed-forward neural networks.

In particular, the present algorithm uses instantaneous statistics sampled after the
dynamical evolution with two stages corresponding to two parameter sets. Alternative
measurement strategies could be envisioned; for example, one might measure the overall
residence time in particular partition cells.

SYMBOLIC DYNAMICS AND SYNCHRONIZATION: THE ROAD PROBLEM AND
GENERALIZATIONS

At this point, I want to consider the problem to be solved by the second
(synchronization) stage of the Soca network. As described earlier, this consists of
sharpening the distribution (e.g. approaching synchronization into one or more clusters)
over the partition cells so that spatial configurations of initial conditions corresponding
to objects in the same category map to identical or very close distributions, taking the
partition cells as dimensions of a metric space.

It seems that this problem structure corresponds to a generalization of an open
problem in graph theory known as the Road Problem (Lind and Marcus 1995) . The
general problem has been open since 1970, while some special cases have been solved
(O'Brian 1981). Since progress on this problem might in turn enhance the prospects for
more rigorous treatment of bounds on the pattern recognition capability of the Soca
network, a brief description seems in order.

The Road Problem can be understood by a colorful analogy. A lost driver
headed for Austin calls the auto club for directions; and happily following the directions
(consisting of a sequence of intersections and turns), she reaches her destination. But the
driver realizes she never told the auto club where her starting point was! This is only
possible if the highway network were labeled in such a way that the same sequence of
instructions would lead a driver from any city to Austin at the same time. Clearly, this is
true only for a special subset of graphs and road labels. If a graph has such a structure,
the sequence of labels leading from any state to the terminal state is known as the
synchronizing word of the graph. The formal statement of the Road Problem is restricted
to graphs with out degree two:

If G is a directed graph with out-degree 2, is strongly connected, and is
aperiodic, there is a road coloring (set of arc labels) with a synchronizing word.
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How is this related to the partial synchronization task? Suppose that the states
resulting from the desynchronization stage of the network cover all k partition cells in the
state space. If we could construct a state flow graph and transitions such that all states
converge to a single partition cell at time t, we would have an exact correspondence to

k
the road problem with (4) colors. The states of the graph correspond to k partitions on

the state space, with 4 neighbors in space requiring arc labels with (4) colors.

However, convergence to a single state implies total synchronization, and both
intuitively and experimentally we will find that it is difficult to distinguish initial
conditions for totally or largely synchronized lattices. Everything looks alike for strong
synchronization, and objects will tend to “collide”. Instead, we need to generalize the
problem to reach a particular distribution over the partition cells at time t, or at least to
approach such a distribution within distance ¢ over the space defined by the partition
cells.

If we want to avoid mismatches with these classifiers based on partial
synchronization, what limits must be obtained. Let dmin(c,,c,) be the minimum distance
between the mean distributions of any two exemplars of all pairs of classes. Let ¢, be
maximum distance of any view’s signature distribution to the mean of its class
distribution. To avoid collisions in a nearest neighbor search, the normalization process
must produce

e, < dmin(c;,c,)l 2

An analogy for this generalized problem, consider this “All Industries Traveling
Salesman’s Regional Convention” problem. We want to have the salesman, distributed
around a graph of cities, converge to some favorable set of cities; if we are convention
organizers, we would like to optimize the distribution to match the conference hall size in
each city. We cannot allow each industry to all choose the same set of cities.

If we wanted a single network with a labeling of arcs and synchronizing word
which sends all salesmen in all industries to the correct city, we have a challenging
problem; if we want this to occur in some bounded number of iteratations, the challenge
increases. The simpler problem is to send all salesmen (lattice sites) in a particular
industry (object) to a satisfactory set of cities (partition cells), while trying to handle the
“overbooking” problem through rules limiting the conference size and encouraging many
small conferences. Even this seems considerably more complex than the original road
problem.

DYNAMICAL RECOGNIZERS AND PICTURE LANGUAGES

I have already briefly discussed the idea of a dynamical recognizer and
mentioned that previous investigators have considered images as spatial extensions of
formal languages. Languages can be described deterministically with grammars; in
contrast, the productions of a language are often described with the tools of
communications theory.

107



While the earlier discussion of dynamical recognizers, was strictly in terms of
deterministic processing, the use of distributions for representation and decision process
recalls the well developed field of statistical language learning. While perhaps not
strictly necessary, I will describe the deterministic computation involved in
representation and recognition in a statistical framework — it seems almost necessary for
the purposes of gaining intuition, and it is possible that techniques from that field may be
used to improve the present system.

Communications theory allows statistical characterizationof a stream in terms of
probabilities of emitting words, or sub-blocks. Enlarging the memory or anticipation
(e.g. including higher order statistics) window of a stream allows more accurate
estimation of the probabilities. In a one dimensional data stream, co-occurrence
probabilities between 2 adjacent symbols (digrams), 3 adjacent symbols, and generally
n-blocks can be measured from the stream. A model of such a Markov process, using
such higher order higher order probabilities, can generate streams with increasing
fidelity to streams generated from a grammar. A large literature on construction of such
chains for decision processes exists (Rabiner and Juang 1986); (Charniak 1993).
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Fig. 22. A simple stochastic language description of an image or family of
images. A matrix of blocks consisting of possible pixel configurations and
probabilities that 2 such configurations are adjacent.

In a spatially extended system, the use of neighborhoods and iterations allows the
recognition process to compute on the basis of a hierarchy of co-occurance statistics.
After the first iteration, each cell (unit, pixel) has first order (2 block) information on the
surrounding 4 on axis neighbors; after the second iteration, information from the
overlapping 2 block statistics of surrounding 12 cells is included, after the third,
information on the second order statistics of 24 cells is available, etc. The first order
statistics condition the state flow of higher order statistics.
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Fig. 23. The integration of higher order statistics over time. a) A one
dimensional illustration of the increasing window size. After the first iteration, a
3-block has been analyzed. b) After the second iteration, each cell contains
information about a 5-block, conditioned by the overlapping 3-blocks embedded
in it. The result is a bottom-up interpretation of information at coarser spatial
scales. Information integrated from the highest order statistics and spatial scales
occurs in the synchronizing stage of the dynamics.

The end result of the dynamical evolution through two stages and coarse graining
to k partitions is that each cell maps a point in a very high dimensional space to a lower
one, limited by the precision required to encode the number of partition cells k. Since the
images are given as binary images, each cell after dynamical evolution has indirect
information about local statistics of various orders up to t1+t2, and the entire lattice has
such information based on the original image in space of possible configurations with

dimension 2". After iteration the value is quantized to a point in range 2“. The
occupancy statistics of all such cells are gathered to some precision, which need not be
higher than log, N, where N is the number of image pixels (and lattice cells). For values
used in this study (k=64,N=5626) a dimension reduction of 49:1 is achievable for a
family of 7 75x75 pixel images 28.

In the experimental work described later, the partition cell concept is only
applied at the end of the dynamics, after sampling. However, in order to visualize how
this dynamical system can compute similarity, it may help to consider the intermediate
states as coarse grained, i.e. consisting of transitions between states defined by the

28 The dimension reduction is computed as 7 * 75 / (64 * log, 75%)
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partition cells. For chaotic dynamics, nearby points will by definition diverge, winding
up in different partition cells. The resulting state transitions can be considered as similar
to a Markov chain, where the transition probabilities between nodes corresponding to
blocks of various sizes. The spatial dependence between cells and the deterministic
dynamics result in the mapping being rather forced; it is unclear whether methods for
constructing Markov chains from decision processes would be directly applicable.

The following diagrams illustrates schematically the processing of the Soca
network serving as a classifier or recognizer of a picture, with the latter considered as a
stochastic language. The network state flow is illustrated as a nonstationary
probabiliistic finite state automata (PFSA), with each state corresponding to one of the
partition cells.

The class learning problem consists of finding the two opponent stage parameters
which label the edges and cells so as to map productions of the language (i.e. members of
a class, projections of a 3D object) to the same distribution over the state transition graph
at time t=t1+t2. Each arc is labeled with a transition probability to another state, when a
site in that state is surrounded by an input word. The number of arcs between any two

k

states is
n

) where k is the number of partition cells and n the number of neighbors.

The use of Markov chains on partition cells was recognized as a bridge between
low dimensional dynamics and information processing models by Nicolis (Nicolis 1986)
and Grassberger (Grassberger 1988); however, the Markov chain formalism cannot
account for the spatial coupling of the CML. The extension to PFSA, by augmenting the
transitions with input words, models the neighborhood-determined state transitions. (The
use of an initial distribution of states is unusual for PFSA, but standard for Markov
chains in distributed systems). To compute the next time step occupancy O in each
partition cell i

k w*

CE=§:E'EMOM
i=1w=1
where k is the number of partitions, w is the word label on each arc, w* is the last

k
of ( )combinations for neighborhood size n, and & the probabilites for each input word
n

state pair.

The Soca network parameters {bl,ci,t1,b2,c2,t2) and the number of partitions k
form a concise specification of this PFSA graph. Of course, the two stages correspond to
a relabeling of the transition probabilities, so the label on each arc is of the form

wlw, t<tl

T2,w, 1 <t2
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While a PFSA model can be deduced from a CML, the two are not equivalent.
The final state distributions computed by the two systems will diverge for images with
equal first order statistics but differing in 2" or higher order statistics. This PFSA
formalism is presented only for the purposes of visualization, as it is clearly an inexact
mapping; it has less discrimination power than the actual CML. The actual CML is
influenced by increasing order statistics (i.e. block adjencies) through time, while the
PFSA over partition cells is limited to 1rst order spatial statistics at each step. The
diagram on the following page illustrates the probabilistic, neighborhood dependent state
flow between partition cells.
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Fig. 24.  The statistical operation of CML dynamics can be visualized as (and
partially approximated by) a probablistic finite state automata. Each state in the
PFSA corresponds to a particular partition cell, or interval of the phase space.
Each arc is labeled by the probability of transition from source to sink state given
the presence of an input word from alphabet {3, ... ®*}, Probabilities  for each
input configuration and state are given on the arc; for simplicity, only one of the
two stages in the synchronization opponent network is shown.
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In summary, progress on mathematical frontiers including:

1. the computation of transient distributions for ensembles in coupled map
lattices

2. coupling bounds leading to synchronization

3. the Road problem in automata theory

could result in the replacement of a heuristic search algorithm with a more direct
solution, or to provable bounds on the power or limitations of the algorithms.

In the absence of such developments, improvements in the learning process
beyond the present work might result from consideration of these issues. It is fairly easy
to see, for example, that the state flow graph implicit in the second (synchronizing) stage
must have paths of roughly equal length leading from the states occupied at the end of the
first (desynchronizing) stage. It is less easy to see how to translate this to effective
contraints on network parameters.

EVOLUTIONARY DESIGN OF SYNCHRONIZATION OPPONENT CLASSIFIERS

The mountain — Buddha’s body

The torrent - his preaching.

Last night, eighty-four thousand poems.
How, how make them understand?

Sotoba, a Chinese layman (Translation by Lucien Stryk)

Evolutionary computing is a form of search intended to mimic aspects of
biological evolution. A candidate solution to some problem is conceived of as a
phenotype. A representation which can construct such a solution is the genotype, a
collection of genes which code for individual parameters of the solution. Search takes
place by forming a population of genotypes, evaluating the fitness of the phenotypes they
specify according to some objective function, and letting the genotype material of the
winners of this selection process assume a greater proportion of the population in
subsequent generation. To reduce the likelihood of finding locally optimal solutions, the
conservative action of selection is balanced by exploratory behavior in the form of
mutation and recombination operators acting on the genotype.

Neural networks are generally specified by their topology, the activation
functions of the units, connection strengths or weights, and any coordination or leaning
structures (Balakrishnan and Honar 1995). Any or all of these may be subject to
construction by an evolutionary learning process, but often known characteristics of the
problem will constrain the network architecture. The learning process may fix some
values, or may put constraints on some values (i.e. unit thresholds), while the problem
specific values are set in specific.

Genotype representations represent an encoding of network parameters. This
encoding may be direct, or indirect. A mapping of the genotype directly to weights in a
fixed topology would be direct; a mapping of the genotype to a set of rewrite rules which
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must be recursively applied to specify a network would be indirect. The network here
specifies bifurcation, coupling and number of iterations with a fixed, regular lattice
interconnect topology; this is a clear example of direct encoding. In this example, the
constraints on ranges that may appear in the genotype are set manually to rule out certain
uninteresting parameter ranges.

Typically, the fitness function is a direct measure of the performance of the
phenotype on the engineering task. In the present work, that approach is used in one toy
problem, namely the search for parameters producing a quasi-metric space for a family of
parametric curves.

However, for more complex tasks complete testing of candidate solutions may be
impractical, at least for portions of the learning process, due to the computational expense
associated with full testing. For example, the more challenging experimental task
described in the next section is to identify particular objects from a set of similar objects,
based on observing a single view after training on two or more views. Evaluating
performance on the final task involves not only testing that all views of the object are
recognized as the same object, but also that other objects are not mis-classified. Since
the computation of the candidate solution is a relatively expensive nonlinear filtering
operation, it is impractical to apply it to the full database of views, or even to a sub-
sample to evaluate misclassification, during the evaluation of 3000 candidates
phenotypes.

Instead, the performance on part of the task (recognizing different views of the
same object) is emphasized, while certain constraints on the output or encoding produced
by the network phenotype are incorporated into the objective function.

In addition, a reproduction strategy was chosen which preserves the best
phenotype in each generation, guaranteeing a monotonically improving score.

Implementation and Performance Details

The current Matlab implementation of the evolutionary learning algorithm runs
30 generations of 100 genotypes. For the major object recognition task, learning the best
representation for each object in the database (by using all 7 views) used 40-50
minutes/object on a 400 MHz PowerPC 750, 1M cache, 100 MHz system bus. The
majority of time in learning (85%) is spent in the image convolutions of the diffusive step
of the CML dynamics. The time variability results from branching around the
computation of some objective function terms when a basic synchronization criteria is
not met.

Each stage, or attractor frame consists of a triple {b, c, s}, where s is number of
iterations in the stage. Two such frames are applied in turn. During evolutionary search
for the parameter sets, the first stage is constrained to 2-6 iterations, the second
constrained to 2-9 stages. In the evolved solutions, the total iterations required to create
the representation space ranges from 6 to 14 iterations, with a mean of 11.3 iterations for
the 39 objects in a 3D object recognition task. Each object in this set is 75x75 pixels,
plus padding proportional to the number of iterations, to prevent array boundary diffusion
statistics from contaminating the statistics. Thus each typical network phenotype
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evaluated represents roughly 77000 (40000+ 30000 * 11) multiply operations for the
convolution and nonlinear map operations.

The simplex reproduction strategy (Karr 1991) governed the transmission of
successful genes. It is well suited for situations where the time complexity of evaluating
the gene is much greater than the processing associated with the evolutionary strategy,
including complex image processing operators (Brigger 1995). In the simplex strategy,
each adjacent pair of genotypes in the pool is evaluated as a local tournament, with the
winner promoted to the next generation. The overall best-fit genotype in each generation
is saved in element 1 of the genotype array, and is protected from mutation; this insures
that the fitness is monotonically increasing and effectively makes the learning procedure
a form of gradient descent. All winners of the pairwise tournaments are subjected to
crossover mutation; given an effective rate of crossover of .5 for the whole population.
The losing genotypes are replaced with copies of the best genotype from the last
generation. These replacements are subject to mutation at rates given in the table in the
experiments section.

The evolution parameters in these scenarios are the bifurcation parameters (bl,
b2), the coupling parameters (cl, c2) and the iteration count of each of two dynamical
synchronization opponent stages (tl, t2). Bifurcation and coupling are represented as
doubles, the number of iterations as integers. The number of partitions k used to record
the instantaneous occupancy at time tl + t2 1is also a critical value in the network
performance; the values used in the work here were 256 for the curve evolution
experiments and 64 for the object recognition experiments. This system parameter was
not subjected to evolution, but held constant within a family of experiments.

Mutation was applied to the genotype copied from the best in generation to the
pairwise competition losers, and to the winners after crossover. The mutation
probabilities are set independently for each parameter as shown. Constraints on the
evolution of parameters, as well as a general form of the desired solution (i.e. two
dynamical “phases”), were provided as assumptions for this study.

The use of such constraints is perhaps unusual for evolutionary computing, and
might be considered undesirable in the sense of biasing the solution. I argue that such
constraints are justified here for at least two reasons. The general hypothesis being
explored here was that a metric space could be created based on the dynamical flow, and
solutions not conforming to this were not desired. Without such constraints — chiefly the
lower bound on bifurcation parameter — solutions would rapidly emerge in the fixed point
parameter regime which were clearly based on the size of the boundary. The high
coupling regime, which can also lead rapidly to a fully synchronized fixed point, was
similarly avoided. Such solutions could be avoided by adding terms to the fitness
function; exactly this approach is taken in the next section, where excessive
synchronization was found to degrade the performance of an object recognition system.
Avoiding the regimes directly by restricting the parameters improves the search
efficiency.
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The learning algorithm is summarized below in pseudocode. The actual code
uses an object-oriented control flow, but here I adopt a procedural style in the interests of
clarity.

The variable viewSet is a set of related images (e.g. exemplars of a parametric
curve, or different views of an object rotated in depth). The complete set of such
families is the objectWorld. Variable population is an array of genotypes
{bl,cl,t1,b2,c2,t2} and a field fitness to record the result of evaluating the fitness
function.

procedure learndb
for viewSet in objectWorld
population = initializeGenotypeRandom;
for generations = 1 to maxGenerations;
generation(viewSet, population);
population = simplexReproduction(population)
end // generations
objectDB(viewSet) = normalizedHist(lattice(viewSet, population(1))
genotype(viewSet) = population(1);
end // viewSet
end learndb

procedure generation
for all genotypes in population
for each image in viewSet
shapeDB(image)= normalizedHist(CML (genotype,image))
end image
genotype fitness = fitness(shapeDB(image))
end genotype
end generation
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procedure simplexReproduction(population)
bestfitGenotype = find genotype with best fitness in population;
if fitness of bestFitGenotype < currentBest, replace;
strongHalf = winners of pairwise competition;
apply crossover operator on winners;
copy currentBest to losers;
apply mutation to copies of currentBest;
return population;
end simplexReproduction

Summary of Evolutionary Learning Method

A evolutionary learning framework for image processing problems was
developed to train a two stage coupled-map lattice network using a computational
strategy known as synchronization opponent cooperative action. The framework allows
substitution of objective functions depending on the specific image processing task. Two
tasks, described in the next part of the thesis, both require the formation of representation
spaces whose dimensions correspond to partition cells in the network phase space. The
objective functions differ slightly, however.

In learning to order examples from families of parametric curves, direct scoring
on the position of points in the representation space is used. In learning to identify an
object in a set, direct evaluation on a stimulus equivalence measure is combined with
indirect evaluation of inter-object discrimination during the learning process. The
representations emerge from these constraints, thus the learning should be considered as
unsupervised.

The objective functions used vary depending on the exact task being performed,
and are consequently described in the appropriate context in the following experimental
work chapter; some details on the organization of Soca software package are given in the
appendix.

An example of the evolutionary learning procedure for one task, the recognition
of paperclip objects rotated in depth, is illustrated in the figure below:
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Evolutionary Learning in the Soca Network
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Fig. 25. Binary images provide the initial condition for a network of recurrent
logistic map units. The network is homogeneous in space, with bifurcation and
coupling parameters between cells identical but time varying. The final result of
training is a set of six parameters (genotype) and a distribution of state values
obtained after a small number of time steps.

RECOGNITION WITH AN ENSEMBLE OF DYNAMICAL RECOGNIZERS

In this section, I describe in detail how the recognition process functions when
the Soca network concept is applied to a pattern recognition task. The task and results
are described in detail in the next chapter.

Recall the description of a dynamical recognizer given in the first chapter. A
recurrent dynamical system was shown by Pollack to function, after training, as a
recognizer for a language by reaching an accept or reject state after iterating over a bit
string. In that case, the network functions much like a finite state automata. Each bit in
the string is a bit in an input stream, with the next state computed from the input and the
current state. Given an appropriate partitioning and labeling of the network’s continuous
state, the input output relation could be preserved and a finite state graph produced for a
regular language.
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The situation here is more complex, due to the higher dimensions and the 2-D
spatial arrangement. Each cell in the CML functions like the one-dimensional recognizer
in Pollack’s scheme, with the following differences:

1. Rather than sequencing over sequence of raw states, at time t the cell
receives a set of 4 inputs processed t-1 times by neighbors. Only cells in
the first iteration receive raw input.

2. No cell can reach a decision on its own; the representation is distributed
over the population of all units.

In Pollack’s recognizer, when the last bit in a pattern is processed the recognition
process is complete. Here, due to the parallel spatial processing, all bits are processed in
the first iteration and every subsequent iteration; the number of iterations until
recognition is given as part of input to the recognizer. In the Soca network, the iteration
counts are part of the genotype. If recognition in a fixed number of time steps were
desirable, this could have been given as a constraint, but the effectiveness of the search
process under that constraint remains to be studied.

The nearest neighbor recognition process after creating a database for all
of the objects, in pseudocode form, is as follows:

procedure bestMatch(image, genotypes, binMeans)
for each genotype in database
hist = dlattice(image, genotype);
if (thisDistance(hist) < bestDistance)
return index(genotype);
else bestDistance = thisDistance;
end // bestMatch
In an alternative testing paradigm, two views of objects are presented; the
algorithm applies the best match procedure as given above; if the same object is selected,
the trial is a match, otherwise a no-match response. This allows the possibility of false
positive and false negative judgements.
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Chapter 6: Computational Experiments

EXPERIMENT GROUP 1: SAMPLED TRANSIENTS OF COUPLED MAPS

Dynamical systems theory inherits from analytical mathematics an emphasis on
asymptotic states, even though analytic solutions remains elusive for nonlinear, and
particularly high dimensional nonlinear systems. Accordingly the literature on the time
evolution of transients in essentially non-existent, though certain phenomena have been
noted. For example, most treatments of bifurcations in period-doubling maps mention
the phenomena of critical slowing down, in which the average time to reach the attractor
increases in the vicinity of a branching critical point, where the attractor loses stability.

In order to study the evolution of transients in maps, several sets of simulations
on asymmetric logistic maps were performed. These encompass both uncoupled,
coupled, and two stage synchronization opponent systems. In some, a fixed initial
condition is explored over a range of the {b (bifurcation), c (coupling)} parameter space.
In others, an image generated by a parameterized function is given as an initial condition
to the lattice. The image is systematically varied while one dynamical parameter is
changed. Animations of the resulting distributions of states over the parameter and input
space help to understand whether such dynamical behavior can be used in classification
systems, and what limitations to expect.

In most cases these simulations were perfomed after the curve ordering
experiments discussed in the next section; the parameters used were chosen from the set
found to produce interesting behavior (i.e. the mapping of a curve family to distributions
supporting ordering the curves by occupancy statistics defining a point in a partition cell
metric space). The number of iterations in each study is low ( 5-9 iterations), relative to
both standard practice in studying CML evolution from random initial conditions, and
relative to the 10-20 iteration counts for recurrent neural ensembles to be considered
biologically plausible. The lower numbers are chosen to emphasize the possible
behaviors in a single processing stage in a two stage system.

When the term final state is used below, it simply means an arbitrary sampling
time in the transient stage of an ongoing dynamical evolution, and does not imply that
any asymptotic state or attractor has been reached. This sampling time is one of the
parameters evolved by evolutionary search for the other experiments in shape similarity
and object recognition. The sampling time is, rather, implicit in the sum of the two stage
iteration parameters {tl 2} of the Soca network.

Convergence Time Distribution for a Single Logistic Map

For constructing engineering systems and modeling biological processes, it is
essential to study the rapid evolution of networks of chaotic units (i.e. the behavior in the
attractor basin fransients). The best known measure of convergence and divergence for a
particular instantiation (bifurcation parameter) of the map, Lyapunov exponents, is
defined for times approaching infinity (Ingraham 1991). However, for computing with
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transients, knowledge or this number may in itself be inadequate; to estimate lower or
uppers bounds on the number of iterations expected to play a role in computations, we
can only perform numerical studies on the short term convergence behavior for
uncoupled or coupled maps. The following diagrams illustrate convergence times for
two bifurcation parameter values in the period 2 limit cycle regime. For the purposes of
constructing representations during the transients, it is crucial that the coupled systems
should not converge too rapidly from random initial conditions; hence, it is encouraging
that such a large range of absolute convergence times are possible in the ensemble.
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Fig. 26. Convergence times for an ensemble of 1000 initial state
pairs.uniformly distributed from the interval [-1,1]. The number of
iterations to reach x, - x., < .001 is plotted. a) average convergence time
for b=1.2 b) average convergence time for b=1.06. the steep slope and
lower absolute time to reach any given fractional threshold indicates a
greater negative Lyapunov exponent.
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Synchronization Time for Two Coupled Maps

The previous section illustrated the time for a single map to reach stable values of
period 2 oscillations, until the period 2 oscillations break down. In this experiment, we
examine two coupled map units with the same logistic equation but symmetric coupling.
Between iterations, a diffusive coupling step adds to each map’s state a fraction of the
other map's state, scaled to avoid exceeding the stable domain of the map.

xl,, =1=b((1-c)(xl, +c*x2,)°
x2,,, =1=b((1-c)(x2, +c*xl,)

Here, the time for two coupled maps orbits to approach to one another to some
distnce € from an ensmble of random initial conditions (x1-x2 <.01) is examined for a
coupling value (.38) which achieves synchronization until strong chaos is induced in each
map. The bifurcation parameters are varied from sub-critical 1.5 to the maximum 2.0.
Illustrated below are two values of b, first sub-critical (i.e. below the uncoupled
transition) and the second beyond the uncoupled transition to chaos. While the maps may
not be fully synchronized at this first approach, they certainly are not synchronized prior
to this time.
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Fig. 27. First approach time for a) b=1.5 , ¢=.38 b) b=1.58, ¢=.38. The
transition to chaos for uncoupled maps is approximately 1.54.
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System of Two Coupled Discrete Maps: Basic Behavior As Bifurcation And
Coupling Parameters Are Varied

Time Evolution of Single Map in a System of Two Coupled Logistic Maps with
Constant Parameters

Two maps are iterated from initial conditions .0001 and .9999. Each map
iterates the logistic equation

Xyl = 1- bxzz

Between iterations, a diffusive coupling step adds to each map’s state a fraction
of the other map's state, scaled to avoid exceeding the stable domain of the map.

xl,, =1=b((1-c)(xl, +c*x2,)°

x2,,, =1=b((1-c)(x2, +c*xl,)

This animated surface shows the time evolution of the .9999 map, with the axis
indicating fixed time parameters for bifurcation and coupling. In this early transient
portion of the map's orbit, the variation between adjacent points in the parameter space is
seen to be relatively smooth. With increasing time, the surface will become irregular as
the bifurcations implicit in the dynamics separate the orbits into attractor basins. Note
that the procedure is carried out on a 200 x 200 matrix of states, with each matrix element
value computed from corresponding matrices of b and ¢ values.
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b1, range 1.

cl,range 1to 6

Fig. 28. A snapshot of the parametric variation in the time evolution of one
coupled map cell after 5 steps, a typical single stage iteration count used
in subsequent experiments for the formation of representation spaces.
The smoothness of the surface suggests that network operation should be
robust in the face of small variations in the parameters.

Final State in First Map of Two Map, Two Stage Constant Parameter System as
Initial Conditions Vary

To investigate whether the particular initial conditions chosen to translate binary
images into the logistic map phase space plays a large role in the outcome, we examine
the state of one of two coupled maps over a range of bifurcation parameters when the
initial conditions are varied to decrease the initial distance between the maps. The
dynamics here are representative of the synchronization opponent style, with the second
stage held constant (b2=1.3694, c2=0.19134, 4 iterations ) while the first stage b and ¢
are varied for 5 iterations. (The second stage values were drawn from parameters found
to produce a distribution supporting metric distance functions matching a parametric
curve).

We can see that the large separation in initial conditions plays a significant role
in creating a complex surface in the transient state, supporting. adaptive behavior by
delaying rapid synchronization.
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Fig. 29. Sampled orbit at 9 iterations with initial conditions 1 mapped to
1.0, 0 mapped to 0.0001. b2=1.3694, c2=0.19134 for 4 iterations, bl and
cl as plotted for 5 iterations.

When the initial states are not well separated, synchronization occurs rapidly for
most ¢ values, thus only a small coupling parameter range results in any separation, thus
the ability of the sampled distribution to construct state flows mapping curves or arbitrary
shapes to a metric output distribution is reduced.

Fig. 30. Sampled orbit at 9 iterations with initial conditions 1 mapped to
0.6, 0 mapped to 0.4.
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Effect Of Coupling And Initial Condition Separation On Final State In A
Two Stage Parameter Cycle

High coupling values result in the eventual convergence or synchronization of
maps, even when their individual bifurcation parameters would result in chaotic
trajectories.

These two animations show the effect of relatively weak and strong coupling on
two maps, for a two-stage dynamics. The surface shown is the difference between the
final states after 5 steps of c1 and b1, 4 steps of b2 and c2.

In this case, the bifurcation parameter in the second stage is a fixed value (b2=
1.3694), while the first stage parameters range over the values shown. Each
subsequent frame in the animation shows a different set of initial conditions, with the
difference between x1 and x2 decreasing. The first frame corresponds to the values
actually used in the subsequent experimental work. The b2 value chosen is one found in
the evolutionary computation process for similarity ordering.

Difference Between Final States of Two Unit Synchronization Opponent
System With Medium Strength Coupling (c2=.1913)

Note that the complexity of the surface shape in the low c, high b regime
supports the ability of the lattice dynamics to preserve a linear relationship between the
generating parameter producing an initial distribution of adjacent states and the final
state. High values of cl are seen to synchronize in 9 steps, even with low c2 coupling.
Bifurcations values are as plotted with b1=b2.

b1, range 1.2t 2.0

cl,range 1to 6

Fig. 31. Difference between two coupled logistic maps in synchronization
opponent stage with b2=1.3694, c2=.1913 and b1, c1 as plotted.
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Difference Between Final States of Two Unit Synchronization Opponent Sytem
With Stronger Coupling (c2 = .3913)

With stronger coupling in the second stage (steps 6-9) the final states are nearly
synchronized for all values, whether the initial states are separated or not.
Obviously no distinctions can be made in this regime, after only 9 time steps.

cl,range . 1to 6

Fig. 32. Difference between two coupled logistic maps in synchronization
opponent stage with b2=1.3694, ¢2=.3913 and b1, c1 as plotted.

Sampled Transient Evolution in Lattices with Varying Parameters, Random
and Structured Initial Conditions

Final State Distribution After 8 Iterations Varying b and c with Random Initial
Conditions

A 200 x 200 matrix is initialized with random values uniformly drawn from the
set {0.0001, 0.9999}. After 8 iterations for a particular pair of b and c values, the
instantaneous distribution of states is measured with 256 partition cell bins.  The
procedure is repeated 20 times with new random matrices, and the average population at
each {b, c} pair is recorded. Each frame of the animation shows a family of 256 bin
histograms ranging across the bifurcation value b for a constant value of c. For each b
value, the entire distribution is plotted (i.e. any bins with equal population would be
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overlaid by the last drawn bin). The first frame illustrates that with no coupling, the two
initial states evolve independently to state values determined by the b parameter; with
the different colors indicating the region of phase space visited in the 8th iterate.

Fig. 33. Distribution of states after 8 iterations for spatially random matrix
with site initial conditions chosen from the set {1.000, .0001}.

A few trends are evident. Low coupling with bifurcation values just above the
transition to chaos of the uncoupled map (b = 1.54) produce distributions with several
major components well separated. The smooth evolution of the modes as bifurcation is
varied - for example, with c=.1, b ranging from 1.6 to 1.7 - is somewhat similar to that
produced by the response of a system to variations in a spatial form.

This suggests that joint statistics of two interacting networks - one driven by high
contrast spatial noise in such a parameter range, coupled to another with a response
which linearly tracks the 2-D projection of a 3-D object - might serve to achieve a more
nearly invariant response, while retaining metric properties as studied in the next section.
Learning to recognize variants might consist of tuning the bifurcation parameters in the
randomly driven subnetwork to offset the natural distribution changes associated with
different views. This approach is not pursued further in the present work.

Final State Distributions with 45° Line Initial Condition Varying b and c
Parameters
A 45 degree line is rendered, with the resulting image matrix mapped to values
0001 and .9999 in the lattice. The coupling between cells is increased between frames.
The x axis shows the bifurcation parameter b ranging from 1.5 to 2.0, while the
y axis shows the population of each partition cell (histogram bin) for that value of b.
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Each bin is plotted in the same color across the range of b values. Note that there are
regions with multiple high population modes (i.e. c=0.1, b = 1.84 or 1.87), while others
have a single low population mode with broad dispersion over the remaining bins.

Fig.34. The state distributions after 8 iterations of a single stage CML with
a 45 degree line (line value 0.999 in a background of .0001) used as the
initial condition. ¢=0.1

Final State Distributions with Fixed c varying b and Linear Initial Condition
Rotated 0° to 45°

An interesting value of ¢ (0.5 with some strong response modes) is selected from
the previous experiment; holding that ¢ value constant, each frame of the animation
shows the distribution over the bifurcation parameter b as the slope of a plotted line
(mapped to the .0001 and .9999 values) is varied.
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Fig. 35. Distributions after 8 iterations of a single dynamics stage with
constant parameter c= 0.5, as the orientation of a diagonal line initial
condition is varied from 0-45° between frames. The line shown in this
animation frame has slope 0.2.

Discussion

The surfaces formed by sampled transients of logistic maps across the parameter
control plane are rather smooth. This has both benefits and drawbacks in the engineering
application of sampled transients. It suggests that smooth changes in a curve family or
image can be matched by adjusting the CML control parameters to shift some distribution
smoothly between bins. (This will be developed further in the next section). On the
other hand, the simplicity and smoothness of the sampled surface might suggests that
perhaps only simple shapes could be tracked by a network with spatially homogenous
bifurcation and coupling parameters.

However, the smoothness in response of a single coupled site does not
necessarily translate to simplicity in the network transformation of a form. The
experiments with a 45 degree line and a line of varying orientation show abrupt changes
in the distributions as dynamical parameters are varied.

EXPERIMENT GROUP 2: ORDERING OF PARAMETRIC CURVES

Data Selection and Methods

There is no universally accepted metric for similarity of shapes (or objects in
general), though many have been explored as reviewed in the background material. For
this reason, the next step in this study of spatial computations via partial synchronization
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focused on a restricted class of shapes where a metric is well defined: that of parametric
curves. For a set of curves generated from an equation with one free parameter, the
distance in the perceptual space of the resulting forms is assumed to vary linearly with
distance between the generating parameter. This implies an ordering of the images
generated for each curve. For each curve, I generated a set of 6 exemplars over a range
of the parameters, captured a bitmap of the plot, performed binary to floating point
conversion and scaled the values of the resulting array to fit the domain of the map.

The fitness function employed to evolve the parameter sets was simply to match
the order of the distance between curves to the order expected from the curve's
generating parameter. I employ a simple distance metric based on the post-evolution
state statistics for the entire shape, with no information about local adjacency statistics
(co-occurrence matrices) used in the evaluation of distance between the curves.

)

Fig. 36. Exemplar images for one of the parametric curves used in this set
of experiments. The images are plots of the equation y =c * x* - log X,
with parameterc =0, 1.5, ... 7.5.

The evolutionary programming algorithm, described in the last section, searches
for network parameters effective in ordering the parametric shapes according to their
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generating parameters. A learning trial consisted of 50 generations, with a phenotype
pool of 50 individuals per generation, or 2500 individuals. Perfect orderings were found
for all curves with this simple termination strategy.

The fitness function employed to evolve the parameter sets was simply to match
the expected ordering shown below. Each curve was represented by six variants, thus the
expected ordering of distance was represented by the matrix:

12345606
214565
332344
441633
555222
666111

Pairwise distances from each curve were computed with a weighted Euclidean
metric on the space defined by k=256 partition cells. The resulting distance array was
sorted, and distance replaced by the corresponding exemplar number, resulting in a
matrix suitable for element by element comparison with the order matrix above. A
perfect score of zero indicated that the distances obtained between the distribution vectors
were identical to the matrix above.

Given that the distances between adjacent neighbors were theoretically equal,
mismatch scores were computed according to row sums (1, 2, 3+4, 4+5, 6), with
respective weights (10, 3,2, 3). The first and last rows were weighted more highly, given
that values in rows 3,4, and 4,5 could be swapped. The high weight on the first row ruled
out degenerate highly synchronized solutions, with a single partition cell occupied. This
would essentially create a representation space based on size alone, which the genetic
algorithm exploited prior to this adjustment.

Mutation probabilities for each network parameter and constraints on ranges are
given in the following table. While the mutation probabilities would be high for some
reproduction strategies, the simplex method always preserves the best individual of the
previous generation and higher mutation rates serve to balance this conservative
tendency.

Table 4. Mutation probabilities and ranges for each network parameter.
parameter | mutation probability | Range
bl 40 1.2-2.0
cl 25 0.1-0.7
tl .30 2-6
b2 40 1.2-2.0
c2 25 0.1-0.7
t2 .30 2-6
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Experimental Results

Summarizing, I set out to examine the statistics of families of curves after a
dynamical evolution in coupled map lattices. I observing that two independent stages of
CML parameters in the dynamical transients produced distributions which served as a
space with metric properties, with the partition cells of the dynamics serving as
dimensions of the space. The study set out to answer the questions:

1. What trends are seen in the parameterization of the time varying coupled
maps for assessing similarity, given bounds on the number of iterations? I know of no
analytical procedure for computing the parameters, so any such optima would be
discovered via evolutionary programming. If there were a single optimal value, perhaps
the transition to chaos, the network should choose the same parameters for both stages.

2. Is there a single optimum parameter set for all such curve families, or would
different curve families result in unique optimum parameters?

The answer to the first question is that the general principle of phase space
expansion and contraction proposed in an earlier study appears valid; such solutions were
consistently found through adaptive search. For one curve (astroid), a solution with all
chaotic-regime local dynamics and high coupling was found. Network dynamics do not
cluster around the transition to chaos for uncoupled maps, though this value should be
shifted by coupling. This adds support to the earlier refutation by counterexample
(Mitchell, Hraber et al. 1993) of optimistic claims for the universal utility of
transition—to-chaos dynamics.

The answer to the second and perhaps more interesting question was negative.
Unique parameter sets were found for different curves. An explicit attempt at
evolutionary search for a single parameter set which would produce the proper ordering
for all three curves was not successful, using the same evolutionary parameters and
synchronization opponent stages which successfully ordered each individual curve
family.
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Table 5. Evolved parameter sets for four curve families

curve bl cl tl b2 c2 t2
ellipse 1.8671 0.1101 6| 1.6392 | 0.3623 8
ellipse 1.7834 0.5515 51 1.9654 | 0.3604 2
5 cycles

astroid 1.7084 0.4546 3104937 | 0.1974
pursuit 1.6739 0.2899 21 0.7567 | 0.3416

The table above lists the evolved parameter sets which served to correctly order
each family, indicating that the partition cells form a quasi-metric space. Six exemplars
were used to train the network. The critical point (i.e. the transition to chaos) for an
uncoupled map is b=1.542.

It is reasonable to ask whether any common features characterize the selected
parameters and their distributions. I measured the distributions of the resulting images
after the CML transformation for parameters with winning and losing fitness, and
observed a trend towad higher co-occurence entropies in the selected distributions.

To verify whether the parameter sets generated smoothly evolving distance or
perhaps only random points which happened to match the exemplars, I generated a larger
family for the curves and plotted the distributions. Typical distributions and co-
occurence entropies for some curves are shown in the following plots.
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Fig. 37. Normalized state distributions from successful parameter sets on
rank order task are plotted against the free parameter for a) the ellipse
b) pursuit curve. Each plotted line is the fraction of states in a particular
bin (partition cell); numbers are bin labels 1-256. Note that different
bins are found for each curve, corresponding to different clusterings in
the representation space. As the shapes evolve, the distribution changes
might be described as a mode transfer.
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Fig. 38. Sum of entropies plots. a) Sum of entropies of 20-bin co-
occurrence matrix for increasing block size on ellipse with winning
parameters; the entropy computation is as in (Del Bimbo 1999), but
scaled by 1/(pixels/block). b) Sum of entropies for the worst score on the
ellipse ordering problem in the first generation.
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As noted earlier, the two processing stages could be viewed as a prototype of a
cyclic change in bifurcation parameters based on slow wave rhythms seen in biological
systems. Accordingly, I also examined whether an extended cycle (five “outer loops” of
two stages) would still allow learning of parameters producing an ordering state
distribution for the ellipse shape family. It was able to do so, but learning produced a
different parameter set for this scenario. However, it is unclear whether cyclic changes
are required or more realistic; readout could occur after the first (slow) cycle, and
biological performance constraints indicate that this must be true if recurrence is used in
the computation.

The sensitivity of the solution to changes in the bifurcation and coupling
parameters was investigated for the ellipse curve. The fitness function was evaluated
after perturbing each of the base parameters by the increments shown, while holding the
others constant. The bl parameter was very sensitive, with a change of +/- .0001
degrading the solution so that exemplars were incorrectly ordered when using the
distributions as a distance vector. Changes in b2, c1, and c2 of +/ .0005 produced little
degradation, preserving the order. The bl parameter, typically operating in the chaotic
regime, is presumably responsible for most of the entropy production, while the b2
parameter and high coupling accounts for the smoothness.
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Table 6. Sensitivity analysis for the ellipse ordering.

parameter delta | fitness (+/ -)
bl +/-.00005 0/0
+/- 0001 30/30
+/- .0005 15/50
+/- 0010 43 /61
cl +/-.00005 0/0
+/- 0001 0/0
+/- 0005 0/0
+/- 0010 5/0
+/- 0100 54/ 15
tl +/-1 55/68
b2 +/-.00005 0/0
+/- 0001 0/0
+/-.0005 15/ 0
+/- 0010 5/0
+/- 0100 30/ 54
c2 +/-.00005 0/0
+/- 0001 0/0
+/- 0005 0/0
+/- 0010 0/40
+/- 0100 20/ 54
t2 +/-1 64 /42

Discussion

Network parameters are found produce high entropy but smoothly evolving state
distributions which serve to order curves in a metric space defined over partition cells of
the network phase space. I interpret the corresponding parameters as the memory trace
for the category corresponding to each curve, and the distribution produced as an
intermediate computational state to be subject to some comparision to memory. The
transformation of arbitrarily detailed images to partition cell bin statistics constitutes
feature selection and dimension reduction. I have demonstrated the basic ability of the
chaotic-periodic transient scenario to produce a state distribution with metric properties,
allowing it to be used as a similarity function for curves.

I have developed procedures to compute multi-scale co-occurrence matrices, and
examined the entropy statistics at different scales. State distributions found to be
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effective in rank ordering the members of curve families had higher entropies than the
failed parameter sets.

Entropy measures are commonly used in statistical pattern recognition as a
measure of the effectiveness (in terms of error minimization) of feature subsets (Chen
1973). This may be related to the discovery of high entropy solutions are found in this
representation space, which also performs a dimension reduction. This insight was useful
in the formation of the objective function used in the next section, where the
maximization of a Shannon entropy measure is one of several components used to
evaluate the representation for multiple views of an object. However, the maximization
of co-occurrence entropies, as measured in this section, was deemed too costly a
computation to embed in evolutionary search.

EXPERIMENT GROUP 3: RECOGNITION OF PAPERCLIP OBJECTS ROTATED IN
DEPTH

The following set of experiments examines the abiliity of the network to solve
the stimulus identity problem, in which different views of an object must be recognized
as “similar” to form a category, even though they may differ rather radically. It would
not be clear that the ability of the network to make a representation for smoothly evolving
objects demonstrated in the last section could be extended to transformations of very
different outlines or curves. With an appropriately chosen fitness reasonable
performance is obtained on this task, even when a subset of views is shown during
training. In addition to recognizing the identity of an object, I will require that this be
done against a background of similar distractors.

Selection and Preprocessing of Data

The images used in this set of experiments were designed in the visual
psychology lab of M. Tarr. The image set consists of 39%° paper clip objects, with seven
views provided for each object rotated in depth. Each object is a chain of 5 cylinders,
with a variable joint angle connecting each pair. The views are separated by 30°, ranging
from —90° to 90°. The objects were originally developed to answer questions regarding
the recognition by components or geon theory of Biederman (Biedermann 1987). The set
consists of four complexity groups with 0, 1, 3 or 5 unique geons substituted at some
position in the chain.

Similar paperclip objects (corresponding to the low complexity set) have been
used in human psychophysics experiments (Bulthoff and Edelman 1992). In these
experiments, subjects were trained with motion sequences of 2-D views, giving an
impression of a 3-D object through kinetic depth effects. In a two-alternative forced
choice task on their object set, with single static views of a target or distractor, the miss
rate (failure to indicate a match when the target was shown) averaged 30%, indicating
that the task is rather difficult.

29 One object in the last group was duplicated in the original set, hence 39 rather than an even 40.
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The specific object set used here was also used in a study by Tarr and colleagues
attempting to discriminate between view-based and structural theories (Tarr, Bulthoff et
al. 1997). In this study no training period was provided; subjects simply had to judge
whether two views shown briefly (200 and 100 ms, separated by a mask stimulus) were
the same or different. Under these conditions, the baseline set of shapes (all tubes with
no geons inserted) were essentially not recognizable by subjects when presented in other
than the training views.

‘t,,_ - PJ:‘ ‘51:.:."' -ﬁ-:‘ hmf
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Fig. 39. Single views of a subset of the paperclip + geon objects used for
recognition. The base set (not shown) are 5 tubes connected at arbitrary
angles. The top two rows are 10 unique objects with 3 geons substituted
for arbitrary tubes, while the bottom 2 rows have 5 geons (no tubes). The
array of Soca classifiers is required to identify which object is presented,
given a single view ranging from +90 to —90 from the O orientation
shown. In a less demanding task, the network must judge whether two
successive images are the same or different objects. From Tarr, M. J.,
Bulthoff, H. H., Zabinski, M. and Blanz, V. (1997). “To what extent do
unique parts influence recognition across changes in viewpoint?”
Psychological Science 8(4): 282-289. Reproduced with permission of
Blackwell Publishers.

The image set was pre-processed for learning and recognition by the Soca system
as follows. The images were provided as 8 bit gray scale, at 300 x 300 pixels. Each
image was subsampled two times (i.e. to 75 x 75, thresholded to a binary image,then
transformed into floating point as required for the CML iteration, with O mapped to .0001
and 1 mapped to .9999. Finally, additional padding sufficient to account for the
maximum allowed iterations was added to the image border to prevent boundary effects
from the Matlab CML implementation3? from intruding on the sampled distribution of the
object itself.

30 A convolution routine with toroidal boundary conditions would eliminate this step.
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Experiments were performed in a staged fashion. Initially, performance was
assessed on a small set of objects to experiment with weights in different terms of the
objective function described below.

Given a baseline learning algorithm, an experiment to assess the maximum
recogntiion performance on a small set (20 objects) was performed by training with all
views. The effects of several variations in the learning process were studied with this set.
The parameters varied include both weights on terms of the objective function described
below, and changes in the evolutionary programming parameters.

A subsequent set of experiments assessed generalization or view interpolation
performance: what effect does providing fewer training views have on recognition
performance? Finally, the same experiments were applied to the full set to get some
indication of recognition performance scaling with an increasing number of objects in the
visual world.

Learning: Balancing Normalization and Separation

Any effective representation must negotiate the classic clustering vs. separation
dillema. In the present case, class members to be clustered are different views of the
same object. To associate various views to the same object, their presentation is
clustered in time in learning epochs. A representation is formed chiefly on a measure of
the CML computation on a single object’s views, but with some influence from the
representations of objects already learned. The relative influence of these factors is
controlled by empirically determined weights in an objective function.

The view normalization concept, in which a classifier network strives to
transform all the presented views to a common output is here modified to apply to
recurrent networks. (Since the Soca network is a single layer recurrent system, the output
is identical with the state variable). Unlike the Chorus feed-forward implementation of
view normalization, no particular view is chosen as the canonical one. Instead, the sum
of Euclidean distances across all view pairs i, ,j is taken as the objective function to be
minimized:

2

k
ij p=

where v, are the occupancies of k partition cells for each of the j views.

It is easy for the network to discover highly synchronized dynamics which map
all views to the same representation; in fact to search more efficiently such solutions are
detected, and result in termination of the fitness evaluation prior to the more costly
procedure described next. The minimum bifurcation parameters were increased in an
attempt to search more efficiently.

To separate categories in pattern recognition applications, it is necessary to
tightly cluster the category members (different views of the same object) while separating
the means of each category (Duda and Hart 1973). To accomplish this task without
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explicitly performing the search task as part of the fitness evaluation, a cross-entropy
measure was maximized as part of the objective function.

Two different strategies for computing cross entropy were examined. In the first,
a reference view (for the genotype under evaluation) was chosen arbitrarily for these
computations and used throughout the experiments described here; during the
generalization experiments when only two views were used, the previous reference —30
was changed to the —60 view.

After noting that the recognition rate for this entropy reference view often
exceeded the overall rate, the strategy was changed to use a mean distribution over all
views for both the genotype under evaluation and the stored signature distributions. This
appeared to have little impact, with slight gains for small object world but a loss for the
full set. More experiments would be required to address this question to a level of
statistical significance.

Before describing the objective function in detail, it may be useful to have a look
at the desired end result. The following figures illustrate the view normalization process
and the effect of the cross entropy term in forcing diverse distributions.
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Fig. 40. Distribution of states generated by classifier across six views of an

object 5.5 in the Tarr paperclip+ object set. The relatively small variance
of each bin’s occupancy illustrates the success of the normalization
process. The labels on each line are the bin number. The mean value of
each bin across all views are used as the signature for comparison during
search. This distribution was generated with standard parameters W, =
20, W, =2, SyncThresh = .15.
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Fig. 41. The phase space dispersion effect of the cross entropy term. Each
colored line is the normalized distribution across k=64 partition cells for a
single object. The 10 objects comprise the low complexity (tube geons
only) group, trained with the standard fitness function weights.
Concentration of the population in the upper bins is evident, suggesting
that many units may be approaching synchronization or a limiting
distribution even in the low number of iterations allowed.

Many errors in earlier recognition experiments resulted from objects whose
representation entailed relatively high synchronization, indicated by concentration of the
population in one or two bins. Other objects would then tend to map closer to this
distribution than to the mean mapping of the “correct” classifiers. It is easy to see that
such a distribution is effective on the normalization task — it indicates that the system is
approaching a limiting distribution under high coupling, a distribution which may even
be uniform for any input. This was recognized early in the exploration of the system; to
prevent this behavior, a Shannon entropy term rewarding broad distributions was added
to the objective function.
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However, adjusting the relative weights of entropy and normalization terms
seemed unable to compensate for the problem. To correct for this tendency, a third term
was added which penalized solutions where the maximum bin occupancy exceeded some
threshold. After a few trials, summarized in the table below, a value of .15 was chosen.
Any distribution whose largest bin population exceeded this threshold had a large penalty
(1000) added, ensuring its rejection.
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The Objective Function for Balancing Clustering and Separation of Classes

The objective function f, with low values indicating higher fitness, takes the
form

f=W,D-W(H +H)+P

synch

where W, is the inter-view distance or normalization weight and W, is the
entropy weight; D, the inter-view distance sum for j views is

k 2
D=E (3 vi,p_vj,p)
ij | p=1

where v, are the occupancies of k partition cells for each of the j views.
H. is the cross entropy or Kullback-Lieber information measure between the

current reference view distribution C and the database of N object distributions
(signatures) S with k bins:

H, , the Shannon entropy of the current signature with k bins is

k
Hy =y Silog, S;
i=1
and P, = 1000 if max(S;) > synchPenThresh, O otherwise. The parameter
synchPenThresh was empirically determined as .15.
The following table indicates results of varying the synchronization penalty
threshold on the nearest neighbor match of the 0° view.

Table 7. Error rates for alternative weights on objective function terms
W, We SynchPenThresh Error Rate %
20 2 4 45
20 2 25 24
20 2 15 15
min Max 15 40
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The table above is a comparison of effects of different sets of objective function
parameter weight on performance of nearest neighbor match with 20 objects and training
with all views. The last row indicates that rather than two terms with weights, the
objective was formulated as a minimizing the ratio distance / entropy. The set
W=20,W_=2, SynchPenThresh =.15 was selected as the standard parameter set for
training in the subsequent set of experiments.

In another investigation of learning parameters, two different mutation styles
were evaluated. All results reported here apply a new random value uniformly
distributed within the bounds presented earlier. However, standard practice for mutation
of real valued parameters is to update values by drawing from a Gaussian distribution
centered on the current value (Wright 1991). Using Gaussian mutation (variance = .02)
on the CML bifurcation and coupling parameters resulted in an error rate of 29%,
significantly worse than the 15% best rate obtained with uniformly distributed mutation.
Presumably this is due to the highly nonlinear effect of the parameter values on network
performance; however without a more extensive set of trials, possibly exploring a broader
range of variances no firm conclusion can be drawn on the relative merits of the two
mutation strategies.

Mutation parameters used during learning trials for this task are shown in the
following table. Note that mutation is applied only to copies of the best individual from
the last generation, which comprises 50% of each new generation, so the rates are
effectively half of the quoted number.

Table 8. Mutation rates used for each parameter
parameter | mutation probability | Range
bl .50 14-20
cl 35 0.1-0.7
tl 30 2-6
b2 50 14-20
c2 35 0.1-0.7
t2 .30 2-10

Nearest Neighbor Match with Training on All Views

Once a reasonable baseline objective function was arrived at, some variations in
learning parameters were examined on a set of 20 objects, consisting of 5 from each
complexity group. In this set, all views of the object were used to form the representation.
The representation consists of both the winning parameter set (i.e. the synchronization
opponent genotype) for the objective function described above and the resulting mean
distribution over 64 partition cells in the interval <-1,1>. The mean is taken for each cell
from the 7 separate distributions computed for each view. The full set of representations,
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consisting of two arrays genotype and binMeans, constitute the object recognition
database for a particular object world.

In a recognition test suite, each {object, view} pair is used as a target. A set of
“hypothesis” distributions is computed by applying all classifiers (synchronization-
opponent genotypes) to the target. The Euclidean distance of each hypothesis
distribution to each corresponding database mean is computed; the object classifier
whose genotype produced the minimum of all such hypothesis distances is selected as the
match. Since all classifiers evaluate, performance of the best match process for N objects
and corresponding classifiers is of O(N) on a serial machine.

Training Order

There was some concern that the best recognition performance achieved in the
parameter tuning scenarios could be an artifact of training order, as all members of each 5
member group were trained in sequence, with groups listed in increasing order of
complexity. An experiment was performed after scrambling the order of training; this
produced an error rate of 18% vs. 15%, suggesting that training order within objects does
not have a dramatic influence on the outcome. Once again, a large set of experiments
would be needed to draw significant conclusions.

Single Dynamical Stage vs. Synchronization Opponent Stages

A set of learning trials was conducted with iteration time for the second stage
fixed at zero, limiting the computation to a single dynamical stage (in contrast to the
synchronization opponent system with two stages). To allow a fair comparison the single
stage was allowed an equivalent maximum number of iteration as the two stage network
(16). All seven views were provided for training, on the set of 20 objects. It turns out
that the single stage dynamics performs surprisingly well, but with a limited number of
trials (10 each for single and two stages) the average recognition rate and the average
recognition time over all the classifiers were better for the two stage system. The
following table summarizes this preliminary result:

Table 9. Single Stage vs. Two Stage (Soca) Dynamics (Average of 10 trials)

Trial type Average Recognition Rate Average Iterations / Classifier
single stage 74.7 15.3
two stages 779 12.7

This preliminary result is interesting in at least two ways. Based on the original
intuition underlying the network, I expected worse performance from the single stage
trials. The fact that the trend in performance is that the difference in scores is not so
significant suggests that perhaps the simple probabilistic finite state automata recognizer
explanation is adequate and the best possible explanation, without the additional gloss of
the subspace synchronization argument.
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The difference in average iterations per classifier is interesting, particularly since
this is not part of the objective function. It is suggestive of a biological evolutionary
scenario in which significant incremental peformance and reaction time benefits accrue
from the use of non-stationary parameters.

Further study with a large number of trials is required to settle these questions.
Ideally, this should be performed after experiments to assess the most effective mutation
rates. Early work in progress on mutation rates suggests that the mutation rates used in
the thesis produce a larger variance and overall lower mean for the two stage trial.

Random Algorithm vs. Evolutionary Learning

A learning trial was performed with random replacement of all but the best of
generation during the reproduction stage, essentially a random algorithm with relaxation
to a local minimum. This training procedure resulted an error rate of 29%. This validates
the effectiveness of the genetic algorithm with simplex reproduction procedure, which
consistently produced results in the range of 15-20% error rates.

Recognition is Not Scale Invariant

A learning trial was performed with the objects sub-sampled to 50% rather than
25% during the search process. The network parameters learned at 25% scale applied to
this larger scale object resulted in an error rate of 95%, essentially chance performance.

Recognition of Untrained Views

Having settled on a canonical set of learning parameters, a series of learning
trials were run with the number of training views ranging from two to seven, to assess the
networks ability to generalize to unseen views. Generalization performance for worlds
consisting of 20 and 39 objects, is shown for a number of views ranging from 2-7.
Training view subsets started with the pair {-90, -60}, adding additional views in order {-
30, 0, 30, 60, 90}. The results of this exhaustive nearest-neighbor match test suite are
reported in the tables below and plotted in the figure following the tables. The third
column indicates the rate of matching the view designated as the reference view in cross-
entropy calculations during training, which was expected to be higher. This is indicated
as n/a for mean-mean entropy trials.
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Table 10.  Nearest neighbor match recognition rates (20 objects, ref.-mean

Cross entropy)

training views, % correct for
views from —90 to +90

mean % correct all
views

% correct entropy
ref.

2 ¢=[100 100 15 20 10 10 45] 42 100
3 ¢=[100 100 100 30 10 10 15] 52 100
4 ¢=[100 100 100 25 15 15 20] 53 100
5 ¢=[90 95 85 100 80 10 30] 70 85
6 c=[75 75 80 80 80 75 20] 69 80
7 c=[85 80 85 80 85 85 90] 84 85
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Table 11.  Nearest neighbor match recognition rates (20 objects, mean-mean
Cross entropy)

training views mean % correct all | % correct entropy
views ref.

2 ¢=[100 100 35 10 15 15 40] | 45 n/a

3 ¢=[95 95 100 20 35 15 40] 57 n/a

4 ¢c=[909095852010 15 ] 58 n/a

5¢=[90 100 100 9585530] |72 n/a

6 c=[90 95 90 70 95 85 30] 79 n/a

7 c=[85 75 8575 80 85 80] 81 n/a

Table 12.  Nearest neighbor match recognition rates (39 objects, ref.-mean
Cross entropy).

training views mean % correct all | % correct entropy
views ref. (2)

2 ¢=[100 100 13 18 8 5 10] 36 100

3¢=[9595 100 13 8 10 13] 48 95

4 c=[829279 87 135 8] 52 92

5 ¢c=[92 87 87 88 85 10 5] 64 87

6 c=[79 777977 74 69 18] 60 77

7 c=[62 69 62 69 61 56 56] 62 69

Table 13.  Nearest neighbor match recognition rates (39 objects, mean-mean
Cross entropy).

training views mean % correct all | % correct entropy
views ref. (2)
2 ¢c=[100 100 157.77.70 13] | 34 N/a
3¢=[929292135.1 13 13] 46 N/a
4 ¢c=[90979590 10 13 5.1] 57 N/a
S c=[79 82 82 84 64 13 2.6] 58 N/a
6 c=[65 67 7272 59 56 31] 60 N/a
7 c=[ 62 60 59 59 69 56 51] 59 N/a
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Performance of view normalization
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Fig. 42. Summary of nearest neighbor recognition rates with training on 2-7
views, for 20 vs. 39 object worlds, and for reference and mean cross-entropy
computations .

For the 39 object world, performance improvement is minimal beyond 4 training
views. The curves labeled ref computed the cross entropy term of all other object
distributions relative to a particularly arbitrary view (-60) during training, while those
labeled mean computed cross entropy relative to the mean of all views the current object.
No clear advantage in seen for the mean vs. mean computation style, which I expected
after noting that the view used as a reference was rarely misidentified. The mean-mean
procedure improved performance slightly for the small set, but degraded it on the full set.
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Category Generalization: Training with A Subset Of Objects

During the trials with all views provided for learning, I noted that erroneous
matches were predominantly to objects within the same geon complexity class (i.e. tubes
+ 1, 3 or 5 geons), suggesting that some clustering was taking place in the representation
space.

Two learning trials were performed using the standard learning parameters as
above, but only using the 5 of the 10 available objects in each group (thus 20 training
objects), then applying the nearest neighbor match to the remaining set of 20 objects
never seen in training. For the two partitions (learning using first or second 5 of each
set), 50% and 55% of the target objects returned matches from the same category.
Chance expectation that an individual guess is in the correct category is .25; applying the
binomial formula gives a 1% chance of achieving 50% correct assignment by random
guesses. In accordance with the previous experiment, fewer errors were made for more
complex objects; for the 5 geon group, all test objects were assigned to the correct class.

Given these results, the system appears to form clustering and subordinate level
categorization (e.g. which “breed” of species paperclip+) on the basis of complexity.
Whether humans would form such categories is less clear and is probably task dependent.
Certainly alternatives which cut across complexity based categories are easy to envision,
such as the categories ‘Large center with small ends’ and ‘Large ends but small center’.
A more explicit examination of clustering is covered below.

Simulating Match / No Match Trials with Random Pairs

In this set of experiments, an alternative paradigm for assessing performance was
used to support easier comparison with neuropsychology and psychophysics experiments.
The two-alternative forced choice paradigm involves a human or animal subject
undergoing a period of training on some set of stimuli, then undergoing a brief (sub-
second) exposure to a stimulus, followed by a second stimulus. Some distractor mask
signal may be used in between the two targets. The subject responds with a match/no-
match choice as rapidly as possible. Error rates, in terms of false positives and negatives
are computed; reaction times may also be recorded, and used as a measure of
confusability between objects.

This paradigm more closely matches the testing strategies undertaken in
psychological studies reviewed earlier. Since (to my knowledge) no experiments with
the nearest neighbor match paradigm of the previous section have been performed, it is
unclear how well monkeys or humans could perform an arbitrary nearest-neighbor match
with a large number of paperclip objects, as in the previous sections simulation paradigm.
Certainly for special cases of subordinate categories like faces, good performance is
possible for a large number of objects.

In the simulated version of the forced choice test paradigm (with the Soca
classifier system as subject), 500 trials of two views are drawn from the set of all objects
and views. The nearest-neighbor function is computed as above for each view of a pair
to determine whether the nearest object is judged as same or different for the pair. An
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error is counted for false positive or false negative matches, with the total error rate as
shown in the table below.

This test scenario was performed for 20 (5 of each 4 groups) and 39 object
worlds. In addition, a variant in which the second object of each pair is drawn only from
untrained views is shown.

Table 14.  Pair match error rates (20 objects, both drawn from trained or
untrained views, 500 trials).

Training views Error Rate %
7 2.6
6 3.8
5 4.0
4 7.6
3 9.2
2 9.2

Table 15.  Pair match error rates (39 objects, both drawn from trained or
untrained views, 500 trials).

Training views Error Rate %
7 4.4

6 6.4

5 6.0

4 6.4

3 7.6

2 10.4
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Table 16.  Pair match error rates (20 objects, second drawn from untrained
views, 500 trials).

Training Error Rate %
views

7 no untrained views
6 8.2

5 10.2

4 7.6

3 8.6

2 8.6

Table 17.  Pair match error rates (39 objects, second drawn from untrained
views, 500 trials).

Training views | Error Rate %

7 no untrained views
6 4.8

5 4.6

4 34

3 3.6

2 4.0

Discussion

The biggest surprise in the pair matching errors is the relatively low error rates in
the last set (Table 13), with the first object drawn from trained views and the second
object drawn from untrained views. This increased the errors when only 20 objects were
used made performance nearly independent of the number of training views. Closer
examination of the experimental conditions and combinatorics suggest that the
explanation lies in the fact that for the alternative condition (i.e. first object drawn from
trained or untrained views), the probability of choosing similar viewing angles of
different object is higher; in the apparently anomalous condition, the same viewing
angles are never compared. The number of “false positives” (judgements that different
objects are the same) accounts for most of the higher error rate seen in table 17, when few
objects but greater likeliood of similar viewing angles are given. Thus I believe the
combination of more (and more complex) objects in the world and non-intersection of
viewing angles explains the low error rates in table 18; views which map to the wrong
object are simply rare under this condition.
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Some degradation of performance on the larger test set was expected, but the
amount seen here suggests that some action should be taken. Several modifications
which might help in scaling up to a larger object “world” are apparent. Increasing the
number of bins (the number of dimensions in the representation space) might help
increase the separation between object categories. Increasing the weight of the entropy
term relative to normalization might also improve the scaling; the current values were
chosen after limited experimentation with the 20 object set. It is possible that the ratio
strategy, combined with a constraint on allowable normalization error would be superior.
Alternatively, local density in the representation space (Krumhansl 1978) could be used
to adjust weights during learning, recognition, or both to reduce false matches.

It may be that the biggest gain in performance from scaling up would be to
simply improve the learning process, in particular the normalization or inter-view
distance term. Analysis of the errors indicate that the views which are misjudged are
typically outliers in a family of similar distributions for the rest of the views, but the
system is unable to find a better solution. It is unclear whether this is dynamically not
feasible, or due to inefficient learning. Relatively little effort has been spent to date on in
the evolutionary search component of the system; some possible improvements are
discussed in the last chapter.

More elaborate (and computationally intensive) measures could include

1. using a multi-scale lattice. To implement this would necessitate a higher
performance implementation than the current Matlab system, which
essentially precludes the use of wider convolution kernels; even with the
nearest neighbor kernels, 85% of the computation time in training or search
is spent in the diffusion step.

2. using some dynamical process (apart from the localized diffusion currently
implemented) to distinguish the location of parts in space.

3. training multiple Soca style classifiers per object and changing the matching
process to a majority vote of the top n responses, where n = the number of
classifiers per object. This assumes that parameter sets which result in good
normalization performance are dense in the parameter space. While there is
currently no proof that this is so, some of the experimental results (multiple
solutions to the ellipse ordering problem, relative independence of the quality
of matching results to the order of objects during learning) suggest that a
multiplicity of solutions to particular representation problems exist.

Explaining the Results

The functioning of the Soca network on the view-based recognition by
normalization task can be explained on several levels. Clearly if a representation space
over dynamical partition cells can be created with perfect normalization and the category
boundaries well separated, the system is accounted for in the sense of its input / output
performance. In the previous chapter on representation, I proposed a deeper explanation
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in terms of statistical language recognizers with a state flow resembling a probabilistic
finite state automata, but in reality more precise in its discrimination ability.

Partition Cells are Not Spatially Consistent Across Views

Another level of explanation seemed required to assess what the system is
“paying attention to” across views and across objects. .To address this question, plots
were made of the spatial location of the highest population bins (normalized fraction >
03) across all seven views of an object (paperclip + 5.5). From this and similar plots, it
appears that in the course of performing normalization (i.e. maintaining roughly the same
distribution across views), there is little correspondence or registration of the partition
cell components with particular “parts” or features across views. Instead, the network is
able to find dynamics whose underlying state-flow graph reaches the same distribution
for the particular starting distribution of initial “words”, as they are arranged around the
contour in overlapping windows.
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Fig. 43. The spatial locations of high population bins (> .03% of
population) of paperclip object 5.5 are shown as a white overlay on the
seven views of object 5.5 . Since the maximum occupancy of any
partition cell is limited to .15 by the objective function, the light areas
must be significant in mapping the object. Note that the entire contour
seems to be represented, rather than any particular feature; based on a
more detailed examination of locations for different thresholds (which
can pick out the highest bin, etc) , there appears to be little consistency of
the location of individual bins with particular features across views.
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Visualizing Clusters by Multidimensional Scaling of the Representation Space

A second approach to understanding the dynamics was to examine the clustering
of the objects in representation space. The following set of images shows the projection
in two dimensions, obtained via multi-dimensional scaling (MDS), applied to a distance
matrix obtained from the 64 bin representation vectors’!. The constraints used in the
formation of the representation space — minimizing differences across views and
maximizing sum of entropies between classifiers — appear to result in a psychologically
reasonable clustering and separation, with a few exceptions. No psychophysical testing
has been performed, so at this point the reader must judge this by inspection. The
requirement for normalization essentially forces the emergence of subordinate level
clusters, as the dynamics is simply incapable of equally spacing representations for
individual objects in the space under that constraint.

The cluster labeled 1 in the first consists of objects with few extra geons,
minimal protrusions; those in cluster 2 have distinctive protruding geons, with several in
the center of the chain. Within these clusters (and to some extent across clusters) the
pattern appears to be something like the turning angle measure, or oriented run length.
There are certainly instances in which I would cluster things differently given free choice
to group the most similar object to any target, the paradigm used in the study of
(Scasseleti, Alexopoulos et al. 1994). Performing a match — no match task stressing a
pre-attentive response may give different results.

31 A measure “stress” indicates the goodness of fit to a particular dimension in the MDS
procedure; the stress for mapping to 2 dimensions was 3.4, which is higher than the value 2 which
is often taken as a rule of thumb for a good fit. Stress under two was obtained for 3 dimensions.
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Fig. 44. Projection of distances into two dimensions via multi-dimensional
scaling on inter-object distance matrix, with distributions computed for
view invariance. Three clusters are seen; clusters one and two are
enlarged below.
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MDS on 5x4 objects, cluster 1
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MDS on 5x4 objects, cluster 2
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Fig. 45. Zooming in on two clusters in the representation space. The axes
are arbitrary distance units determined from inter pair distances in a unit
cube.

Comparing The Soca Classifier Approach With Other Systems

Exact comparison with the other systems reviewed earlier is difficult, as the
training circumstances reported in each varied slightly. On the whole, the raw
information presented for training to the Soca system is less than that provided for
Chorus and SEEMORE, consisting of fewer, widely separated views and no shading or
color data. The other systems have “front ends” consisting of more than one hundred
local feature detectors. Soca, in contrast has no feature front end, only the asymmetric,
diagonal-suppressed coupling. We might consider the simple threshold based conversion
from shaded color to binary as a primitive front end.
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I assume, of course that the non-trivial task of segmentation to produce a primal-
sketch style image has been done by previous computational stages. All three systems
have only been tested with isolated objects.

Error Rate Measures and Testing Conditions

The Chorus system (Duvdevani-Bar and Edelman 1999); (Edelman 1999), an
ensemble of radial basis function (RBF) classifiers, was trained on a visual world
consisting of 10 shaded objects readily assigned to categories such as quadrupeds,
airplanes and cars. Test views of the objects, separated by 10° increments, were
presented in a range of +/- 60° in azimuth and elevation, for a total of 16-17 views for
each objects. Of several tests reported, the closest comparison to the present work is the
recognition of untrained views of the 10 objects using a winner-take-all algorithm over
individual RBF classifiers. In this case, the error rate for Chorus is 10%. Use of an
additional competitive layer reduces the error to 7%.

This performance slightly exceeds that of the Soca system, but differences in
complexity and information content of the raw data, view separation, and look ahead
over the entire object set prior training make judgements about the superiority of either as
a computer vision method difficult to assess without further study. Soca consistently
exhibited its best performance on more complex objects in its training set, thus might
perform better overall in a more complex object set; the effect on performance of
providing more closely spaced views is unknown. Testing of Chorus on a set of objects
with limited range like the paperclip set has not been performed.

The views selected for training the Chorus classifiers were chosen by an
algorithm with access to all views of all objects in order to separate the clusters. No such
global view was made available to Soca, which formed representations based on cross-
entropy functions of objects representations already formed in an attempt to solve the
same problem.

Error rates for a nearest neighbor match performance assessment of Mel’s
SEEMORE system using only the 79 shape channels alone is reported at 21.3% This
rate was based on 12 rotation in depth views separated by around 60°; additional views
for scaling were provided. Test target views excluded highly foreshortened views. The
visual world in SEEMORE consisted of 100 images, with three scales provided for each
training view, resulting in 3600 views total3? if all objects were rigid. It is difficult to
project how the performance of Soca or Chorus approaches would scale to that size.

Considering that Soca used more widely separated views, foreshortened views,
no shading data, and no selection of preferred training views based on overall world
statistics, the performance is nevertheless comparable to the other algorithms. The
training procedure is rather arbitrarily truncated, and explores at most 3000 genotypes per
classifier; more thorough exploration of the parameter space might improve the process
of normalization across views. One could argue that the paperclip discrimination test is

323600 would be the number if all objects were rigid; additional views were provided for nonrigid
objects.
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the most difficult, given that human error rates range as high as chance for low
complexity (tube only) geons with exposure to only single views (Tarr, Bulthoff et al.
1997). Clearly humans are already trained on the everyday objects used in Soca and
SEEMORE, and it would be surprising to see substantial error rates for humans in
match/no match tasks.

Memory Utilization

For each object represented in the Soca system, a vector of six parameters are
stored specifying the dynamics for the two synchronization opponent stages. In addition,
a signature corresponding to the means across all views of the sampled distribution after
the specified number of iterations is stored. In the Matlab implementation, all floating
point values are double precision; thus 48 bytes are used for the parameter set (genotype)
and 512 bytes (64 bins x 8 bytes) for the signature. It seems unlikely that performance
would suffer greatly by storing single or even lower precision values, since the signatures
are not used in iterative calculations. As noted in the learning and representation

selection, no precision exceeding log, N, where N is the number of lattice units, is

useful, since the occupancy of a phase space partition cell cannot be less than this unless
it is zero.

A table below summarizes the relative memory utilization of these shape
recognition systems. Note that the minimum error rate for Chorus and SEEMORE is not
reported as more training views were available for Chorus and non-shape data was
available to SEEMORE. The Chorus rate reflects fewer views (and less memory) to give
an error rate comparable to Soca for memory comparison, while the SEEMORE error rate
reflects performance and corresponding the memory used for the shape channels only.
Both reports featured sufficient information on perfomance with limits on training to
partially compensate for these differences in the following comparison.

Memory representations for Chorus involve specification of radial basis function
centers, widths, and weights for each node. One center per view is typically used. Error
rates depend on the number of views provided; to achieve an error rate of 15%, the data
reported for Chorus suggest 5 views would be required, resulting in storage requirements
of 2400 / bytes object 3 with double floating point representation of network
parameters. For SEEMORE, the appropriate comparison (using only shape channels,
representing only rigid objects, and not providing extra scaled versions during training) is
1264 bytes / object.

33 5 views x 3 (center,width,weight) x 8 bytes/double x 200 receptive field activations
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Table 18.  Memory utilization and error rates for Chorus, SEEMORE, Soca

System Memory Error Rate | Objects Views per
Bytes/Object % object

Chorus 2400 15% 10 5

SEEMORE 632 21 100 36

Soca 560 15 20 7

A NOTE ON RECOGNITION PERFORMANCE

Performance of the recognition algorithm is a O(N), where N is the number of
objects. Specifically, it is N*(M+D), where M is the computation time for the CML on
the given view for t1+t2 iterations, and D is the time for the distance computation. This
is dominated by the CML computation, and profiling shows that 85% of the time is spent
in the averaging convolution function filt2d. Using 82x82 image arrays for the
experiment reported in the next chapters , the Matlab implementation on a 400 MHz PPC
750 (1M cache, 100MHz system bus) resulted in a maximum CML computation time of

0.18 sec.
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Chapter 7: Discussion and Summary

It takes two to invent anything. The one makes up combinations; the other
chooses, recognizes what he wishes and what is important to him in the mass of
things which the other has imparted.

Paul Valeéry

The method presented in the previous section was motivated by work in various
disciplines. I now turn from details of implementations and experimental results to
consider the Ilimitations of this study and opportunities for improvement from the
perspective of each discipline, followed by a summary of the relevance of this work for
the field and the research openings suggested by the findings here and in the
corresponding work surveyed.

LEARNING ALGORITHM AND REPRESENTATION

Several approaches can be considered which might improve the recognition by
more effective learning, without changing any other network parameters. One strategy
has been designated as a cooperative coevolutionary approach for general optimization
(Potter and De Jong 1994) or symbiotic adaptive neuro-evolution (Moriarty and
Miikkulainen 1996). This involves maintaining separate populations for subsets of the
parameters of some system, and evaluating the fitness based on how randomly chosen
individuals from the two pools cooperate to solve the problem. For the Soca network, the
two stages could be mapped to different subpopulations, with evaluation based on a
random combination of genotypes for each stage. These methods have been
demonstrated to improve performance relative to single population approaches.
However, given the high degree of interaction between network parameters here and the
relatively low number of parameters, the potential gain is unclear.

Incremental learning (Gomez and Miikkulainen 1997) is another approach that
promises improvement. Rather than optimize for a complex task from the beginning, the
task may be incrementally modified with increasing complexity and an incremental form
of learning used to modify the solution. One way to adapt the object recognition task
would be to train first for synchronization across views with an entropy constraint, then
add the maximum-cross-entropy, then finally test evolve performance on the actual
recognition task between objects which generated failures after the second stage.

Using ensembles of classifiers can improve performance, when the errors made
by the classifiers are independent (Hansen and Salamon 1990). The use of the cross
entropy criterion could be extended to this application by attempting to form new
classifiers for the same object which maximize cross entropy from the previous classifiers
for the same object.

Alternatively, one might consider abandoning the evolutionary learning paradigm
altogether and attempt a more direct control method. The types of optimization criteria
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employed here (normalization, entropy and cross-entropy measures, and synchronization
limits) should be utilized as architectural principles guiding the control design.

I turn now to the current representation strategy. It may be possible that
changing the partition size to finer granularity or possibly using non-uniform intervals
(bin widths) to match the density of state occupancy in certain regions could increase the
recognition performance.

Whether there are inherent benefits or liabilities of the partition cell coding
strategy has not been a major focus of this work. Instead, the emphasis has been on
demonstrating a column-like assembly with complex, stimulus-driven temporal patterns
(in line with recent trends in sensory neurophysiology of the temporal areas) that can
serve as the algorithmic and mechanical support for creating population coded metric
spaces and normalization in view based recognition.

Benefits may exist; it would be interesting to compare the ease of learning this
statistical, partition-cell based representation with localized representations, given an
equivalent learning procedure such as the genetic or evolutionary learning strategy used
here. Apart from the time to find a solution in some learning or search procedure, the
density of feasible solutions could also be important. This is particularly true as the
number of objects increases and collisions - different objects mapping to the same point
in the representation space — becomes an issue. Having many solutions to a task
available should make balancing of conflicting objectives easier, and could support more
computationally intensive but higher performance classification by creating multiple
classifiers per object, with a voting criteria or other resolution mechanism. This remains
an area for future work.

SOCA NETWORK CLASSIFIERS AS A COMPUTER VISION TECHNIQUE

If viewed from the perspective of practical computer vision and visual
psychology, the study has some limitations. I will note these, together with directions I
envision to bring the model into closer correspondence with psychophysical performance
levels.

Isolated Common First Order Statistics

The system is currently limited in scale and context sensitivity during processing
to a spatial window around each pixel, within which it receives information via spatial
diffusion. It is easy to present collections of lines or contours separated by this window
distance which, since their “wavefronts” will not interact, will be indistinguishable; see
the following figure for an example. At least two possible improvements are foreseen to
handle this situation. One would be to directly address multiple scales by introducing a
pyramid of CMLs, operating on subsampled binary images or other representations.
Another possibility is to relax the current assumption of homogeneity in bifurcation and
coupling over the lattice. Rather than choosing exact values, the system could be trained
to employ a range of values to be spanned over the space of the lattice.
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Fig. 46. Two collection of lines which cannot be distinguished by the present
architecture. Blurring, pyramid structures, and spatial gradations of control
parameters might allow these to be distinguished, but whether learning will
perform comparably under those conditions is unknown.

Handling Multiple Scales

As noted earlier, performance with objects subsampled once rather than twice
was very poor. It is possible that this could be compensated for by training at multiple
scales (the approach taken by Mel with SEEMORE). Alternatively multiple scales, could
be built into the dynamics in a number of ways. A pyramid structure could operate in
parallel on the data, with various scales uncoupled or possibly coupled.

Ecological Realism and Learning while Behaving

The system is currently limited, in terms of ecological realism, by the separation
of learning and recognition epochs. Learning is also assisted by imposing clear temporal
boundaries on the presentation of a single object. The extension of such a system to an
ecologically realistic environment where learning and recognition occur together in the
context of tasks would entail additional control dynamics, the nature of which are not
entirely obvious.

Limited Range of Objects

The range of objects studied here is intentionally restricted. In psychological
terms the problem addressed is chiefly subordinate categorization, and the refinement of
that problem to stimulus identity from multiple viewpoints. Conceivably, basic level
categorization arises naturally from the constraints imposed by view based interpolations
on the representation space and mappings, as Edelman contends.

For future development of the system it would be desirable to test on one or more
standard vision benchmarks. While quasi-standard benchmark sets exist for certain
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applications (faces, fingerprints, textures), a widely recognized object library is still
lacking. One possibility is the library assembled by (Verfaillie and L. 1995), which has
the advantages of some existing psychophysical data on view preferences, reaction time
trends, and freely available. Human similarity preferences also exist for the large
silhouette library used in the IBM QBIC project (Scasseleti, Alexopoulos et al. 1994), but
different views are not provided for each object, limiting the direct applicability as a
training corpus. One could use portions of the human similarity clusters for each object
to train, then assess performance on others.

From Isolated Objects to Scene Analysis

The current limitation to recognition of isolated objects, while common in
prototype object recognition systems, is not realistic. Humans can clearly recognize
conjunctions of objects, or perform matching tasks with multiple objects in a scene.

As reviewed in chapter 4, many investigators have begun to address the problem
of segmentation within the general framework of coupled oscillators. To build a large
scale system for scene analysis which combines segmentation, recognition, and search
appears to be a feasible goal. The combination of search and segmentation together is of
particular interest in a practical system and should be pursued in future work.

As an initial step, one might address the search issue by continuing to learn
object representations by isolated presentation, but require matching to occur in the
presence of multiple isolated targets.

A more sophisticated recognition of objects imbedded in scenes would require an
extension to active vision, a major research area which has not been addressed in the
present work. Some sort of scanning behavior, simulating the saccade control and
foveation process is envisioned. In earlier unpublished work, I proposed and simulated a
dynamical algorithm for choosing stimulus-determined saccade points based on selecting
image points which differed from their surround when sampled late in a Soca-like
desynchronization - synchronization cycle (DeMaris 1995). These points were typically
found adjacent to areas of high information content (e.g. on orthogonal axes near
curvature maxima).

To address issues of ecological realism, in particular the fluid nature of mixing
learning and recognition in the service of goal-directed behavior, further study of large
coordination dynamics is required, combining evidence from EEG/MEG and more
micro-level recordings on the same task. Analyzing experimental outcomes in terms of
the framework sketched in this thesis for inter-region coordination may prove fruitful.
For example, if the separate dynamical stages of the Soca processing cycle play a role in
shaping of distributions for memory formation or comparison during search, a
mechanism and its dynamical signatures must be identified for initiating and terminating
such cycles.

Different possibilities are envisioned. One is to employ intrinsic rhythms,
serving as perceptual frames. Alternatively, and perhaps more plausibly, is that
behavioral events trigger the initiation of cycles. These events might include actions such
as terminations of saccades, or cessation of head movements during gaze orientation.
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Improving Recognition Rates on Larger Object Worlds

Before expanding the scope of the problem to segmentation and scene analysis, it
would be appropriate to first address the issue of scaling up to larger problems.
Performance of the system degraded substantially when the number of objects in the
world was increased from 20 to 40. This degradation was more severe in the nearest
neighbor recognition of a prototype, less so in the match-to-sample style task. It is
possible that identifying an exact match from a large set of similar objects is so difficult
that human behavior would degrade similarly, due to increases in the number of
indistinguishable foreshortened views or views with similar statistics at all scales. There
is a good deal of evidence that for faces, a category where we have impressive
discrimination capabilities among large numbers of objects, specialized subsystems are
involved.

Several promising strategies are open to exploration. Most of these would entail
substantially increased computing burdens, suggesting that a rewrite of at least the core
convolution and mapping loops be performed. Given the low iteration counts, roundoff
should not be a serious issue; the use of single precision floating point should be explored
and should lead to considerable speedup.

The present system is suitable to parallel processing at the level of parallel
evaluation of network genotypes in learning and recognition epochs. The local nature of
computations in the core algorithms lend themselves to parallel hardware
implementations or pipelined computations. Some of the possible algorithmic
improvements proposed above would impact the achievable density. Allowing
inhomogeneous bifurcation or coupling parameters would entail additional registers or
sequencing parameters to computation nodes, for example.

Use of More Complex, Larger and Multi-Scaled Coupling Kernels

It is likely that using a larger, more complex coupling neighborhood (convolution
kernel), more partition cells, and possibly non-uniform intervals adapted to the
dynamics and the object world would improve recognition performance to some extent,
but with a tradeoff in computation time. Of course, the limitation to a single orientation
is an artificial limitation that could be removed.

Using larger coupling kernels has potential to improve the performance, based on
some preliminary results in an early experiment seeking a universal classifier (i.e. one
which did not develop a classifier based on multiple presentations of an object). While
the overall results were poor for scaled and objects rotated in the plane, better results
were obtained with larger coupling matrices with specific orientation kernels.

It would be possible to make the coupling kernels part of an evolutionary
learning strategy. I have mentioned the possibility of multiple scales of analysis of the
image previously; it is likely that particular objects would require different weighting of
statistics at particular scales, or coupling between scales, to handle situations when local
or global information is more important. For example, with non-rigid objects we might
wish to weight the response of local information more heavily, or allow it to have more
influence on a common, cross-scale determined distribution by asymmetric coupling.
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Use of All or Portions of the Ensemble Time Series

The strategy of using lattice state values sampled at a single instant was chiefly
chosen for simplicity, and a low computation and storage burden. It is possible that
improved performance could be achieved by examining the entire N channel time series
or some measure of this dataset. Additional measures might serve as witnesses casting
votes for one or another object when the standard distance measure fails to produce a
clear match. For example, if the mapping of an object is close to two or more signatures,
a vector of rate averages might discriminate. These additional measures would have to
be saved as part of each object (or prototype’s) signature, of course.

In fact, since the learning procedure currently does not perform actual
comparisons, there is really no proof that the optimal discrimination performance for the
given set is obtained at time step (t1 + t2). It would be interesting to examine recognition
rates at earlier times. It might prove useful to consider vectors at the last two steps as
predictors, and to adjust the objective function to measure and score these.

Improving Search Performance with Indexing

If adequate performance on a large and diverse object set were obtained, it would
be important to address efficiency in the search process as well. While dynamical
methods might exist, their nature remains a topic for future research. In the short term,
an indexing strategy could be used to speed up the search process.

For example, I have shown that the application of multi-dimensional scaling to
the database of mean distributions over the partition cells results in a clustering of cells.
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The following steps would improve recognition performance, with speedup
depending on the number of clusters obtained. The basic idea is to evaluate (i.e. execute
the CML dynamics) only those prototypes near to the best performing clusters:

Perform clustering via Multidimensional scaling or some other procedure.

Choose a classifier with a signature nearest the center of each cluster.

Evaluate the phenotype network for each cluster center.

For the classifier with minimum distance from Soca(target) to signature
Evaluate all cluster members.

If the occupation of the representation space is not distinctly clustered, another
technique might allow screening of distance computations after the CML evaluation. A
low resolution version of the signature histogram (the partition cell occupancies) can be
computed and stored. For example, the current implementation used 64 bins; construct a
32 bit string by choosing odd bins and setting the corresponding bits 1 if the occupancy
exceeds half the value, 0 otherwise. (Signatures with bins near the threshold could be
scheduled for full evaluation to avoid false negatives). A simple bit comparison will
exclude objects with rather different signatures. More sophisticated variants of this
approach have been developed for comparison of similarity in chemical structures
(Willet, Barnard et al. 1998); (Flower 1998).

Such a technique could be of even greater importance if all or portions of the
lattice time series were used as a signature, rather than an instantaneous sampling of the
lattice as was performed in this thesis.

Noise and Occlusion

As mentioned earlier, scale space methods typically avoid creating new spatial
structure, while the procedure described here is completely dependent on fine structure
and cooperative interactions derived from those structures. This suggests that the process
would be noise sensitive, and to date I have not performed any experiments by degrading
the initial binary images with noise. One factor likely to mitigate the effects of both
noise and occlusion is the collective measurement process.

Learning from Single Views

It is clear that humans (and monkeys) can learn to recognize exact views and
some limited transformations after a single exposure. How can the current framework
account for this?

One possibility is that ensemble networks serve as a back end allowing
interpolation in the space spanned by a limited number of existing prototypes. This is
essentially the approach taken by Chorus. Single shot learning gets a free ride on prior
learning of objects seen from multiple views.
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Another possibility would be to generate multiple views from a single view by

sampling different subregions of the image, applying different morphological or disortion
operators which approximate viewing transformations, or other procedures.

SOCA NETWORKS AS A BIOLOGICAL THEORY

The work here has adopted the view based recognition paradigm for recognition

of objects, but differs in assumptions of the underlying neural mechanics. Admittedly,
the existing framework is completely hybrid in character and has a long way to go to be a
complete biological theory. Yet there are intriguing correspondences between the nature
of the computation here and aspects of biological computation. In summary, the major
distinguishing aspects of the Soca network approach from classical connectionist models
are as follows:

1.

The neuronal group level is taken as the basic functional unit, with macrostate
variables representing the ongoing ensemble state. Computations and representations
are formed by collective measurements (distributions) over spatially uniform
ensembles of these units.

The typical connectionist unit transfer functions (sigmoidal activation and threshold
output) is replaced with a nonmonotonic, highly nonlinear (chaotic) function. There
is no threshold, since the state variable represents some collective measure such as
ensemble frequency or phase distributions. Connections between groups are not
excitatory or inhibitory, but serve to construct intrinsic state flows in the space of the
recurrent network dynamics; these can be tailored to the statistics of input
configurations. In Marr’s hierarchy of processing levels, the algorithmic level
involves spatial cooperative processes in these state flows.

The code for family of input patterns (i.e. outline shapes) is a sample of the states in
the entire network at a specific point in time, rather than activation of an optimal unit
(place codes), a connectionist sparse or distributed output layer, or a recurrent
network in a static (fixed point) attractor. The code is computed via synchronization
processes operating on stimulus-linked aperiodic oscillations with local cooperative
interactions. Synchronization or clustering may arise in distant units with similar
local input configurations, with no communication between the areas resulting in the
synchronization. Rather, a common history and local cooperative dynamics results in
occupying the same region of a dynamical phase space.

Synchronization may be considered a form of competitive processing, but differing
from the “inhibition of rivals” scenarios usually seen in rate code models. Instead,
through cooperative processes, particular oscillation modes occupy sites in the
network. This is effectively competitive since there is selection from broadband
oscillations to a sharply peaked distribution. Whether this “cooperative competition”
offers advantages over the usual type requires further study, but it seems to map more
readily onto a view of neurons as spike coincidence detectors and participants in
spatio-temporal processing assemblies exhibiting local coherence (Bullock,
Achimowicz et al. 1995).
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5. This spatial cooperative processing and partial synchronization effectively performs a
low-dimensional transformation of high dimensional objects (i.e. image arrays) after
first projecting them into higher dimensional spaces (by relaxing subspace
synchronization constraints created by earlier levels of the visual system). In this
higher dimensional space, the spatial diffusion process generates information about
the initial spatial configuration for increasing orders of local statistics, but
conditioned by lower order statistics.

6. The network is time varying. These changes in the dynamics are interpreted as
corresponding with major signal bands and modulations as observed in local field
potential EEG and multi-unit neuron correlation studies. For the most part,
connectionist accounts of cognitive processing make little contact with medium and
large scale electrophysiology; rather, they focus on the level of neurons, stressing that
these may stand for groups. In contrast, the present work investigates computational
processes involving temporal changes in coupling (modulating synchronization) and
in bifurcation parameters (modulating synchronization and the aperiodic or periodic
tendencies of oscillations), motivated by observed changes in coherence, spectral
sharpening at various space and time scales of biological neural systems.

While these attributes are all unusual in neural modeling which attempts to address
the perceptual or psychological level, there are many grounds for criticism in terms of
biological realism.

The arbitrary starting, stopping and injecting an image as an initial condition into the
network is problematic. Some dynamical networks use an input stage to inducing a
perturbation of an ongoing state vector, perhaps by increasing coupling parameters in a
processing layer coupled to a learning and recognition layer.

A general criticism that might be leveled is the rather loose commitment to the
meaning of the state variables at the lattice sites. I have generally followed the approach
that they refer to ensemble average frequency (or spike density), which should correlate
with the amplitude of the local field potential. This is the approach taken by Freeman,
and I offered the justification for this in terms of random firing models producing a single
humped curve.

On the other hand, I have held open the door that these principles could also
apply to more complex spike coincidence and phase modulation networks; one of the
strengths of nonlinear dynamics is the universality of the principles, so that many
different underlying physical systems may exhibit similar dynamical trends.

I have claimed support from observations interpreted as temporal codes, but in
fact the code used here is an instantaneous state vector. The distinction between code
and computation producing the code has perhaps been blurred. 1 have implictly
suggested that the observed temporal modulations may be a computation “steering” the
system toward a partially synchronized state. It would be interesting to perform “probe”
experiments on the units, to see whether in fact stimuli can be predicted from the time
series of units to verify this.

In spite of these limitations, I argue that the general principles here are a viable
algorithmic and mechanism-level theory (or proto-theory, perhaps) of object
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representation and that experiments related to many of these computational principles
may serve to distinguish between the competing algorithmic theories within a view based
computational framework. I now examine several such possibilities.

Slow Wave Phenomena

It is possible that the idea that slow wave phenomena in neural masses acts as a
bifurcation or coupling parameter control, as I have suggested, is overstated or
oversimplified. No detailed models based on integrate and fire dynamics have been
developed to date to support this hypothesis; it is possible that spiking dynamics alone
result in the slow wave phenomena, without anything as regular as a clock. Studies of the
time course of synchronization phenomena show considerable variation from trial to trial,
rather than a predictable time course (Gray, Engel et al. 1992). In all cases, episodes of
oscillation are transient, lasting from 100-200 ms, followed by epochs of aperiodic
activity. Whether this indicates intrinsic rhythms, the intermittent dynamics described by
Tsuda as a binding strategy, or some unsuspected phenomena is not clear. If more
regularity in synchronization were seen it would better support the theory of coding —
however, the studies above are in primary visual cortex of anaesthetized cats, where one
would really like to see similar studies in areas (V4, TE) more implicated in object level
coding and recognition.

It may be that no model at the abstraction level of coupled maps could reproduce
synchronization phenomena in EEG measures, though this has been difficult to achieve in
more detailed models such as the Freeman group’s KIII model; finding the invariant
response to a stimulus remains a challenge in animal studies (Kay, Shimoide et al. 1995).
Dynamics at the level of bifurcation and coupling parameters may play an interpretive
role, but if the time course of their modulations are irregular and emerge directly from
spike interactions, simplification may not be possible. I think it is too early to make this
negative conclusion, though, as the line of investigation pursued here is still novel and
untested, but tracks observations at many scales of neural dynamics which remain largely
uninterpreted in computational or algorithmic terms.

The phenomenon of alpha blocking arguably is evidence against the Soca
scheme. Alpha is maximal with eyes closed, especially in occipital (primary visual) and
parietal areas, but is greatly reduced when a visual stimulus is presented (Basar 1998).
This might be taken to indicate that the alpha band is an emergent cortical process
governed by spike dynamics and graded potentials alone, rather than being a kind of
dynamical control function as hypothesized here.

However, this reduction may be in part an artifact of coarse measurement in scalp
recorded EEG. As reviewed in chapter 3, slow wave phenomena and changes in
coherence are evident in local field potential in primary visual cortex. Modulatory
dynamics and functional role of slow waves are still poorly understood. Thus, I argue the
present demonstration of a computational role for modulations in parameters
corresponding to slow wave phenomena is important and deserves further study.

There is some evidence that alpha frequencies are implicated in memory
performance. Klimesch investigated relationships of short and long term memory with
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alpha band among age matched subjects; the good memory performers had 1.5 Hz higher
alpha peaks compared to poorer performers. Alpha desynchronization was pronounced
for subjects with poor memory (Klimesch 1996). The Soca network style described here,
while primarily perceptual, can be described in part in terms of using slow wave control
to turn image-like structures into a usable distributed representation suitable for
comparison by hypothetical synchronization operators. This general principle may be
effective in other areas, such as memory. The failure of slow waves to synchronize
adequately might lead to deficits in perceptual and memory processes.

These deficits could be studied in the present conceptual framework, by
examining temporal dispersion around the precise transitions to new dynamical
parameters currently used. Parameters would be inhomogeneous across the array, but
still drawn from the same value sets.

In the more complex biological network, such sampling of a transient process can
not be the end result, but might be a starting point for further encoding in long term
memory, and for matching against some version in working memory during search tasks.
Changes in inter-regional coherence corresponding to readout or further processing of
such an encoding should be expected, and these are precisely what the studies of Bressler,
Basar and colleagues cited above demonstrate.

If Soca-like computation and coding occurs in IT cortical complex (or related
form processing areas like V4) it is certain to work in conjunction with memory
formation networks and comparison networks. Soca-like networks might play roles in
view interpolation, invariant recognition, and similarity mapping. Memory formation
might be handled by recurrent attractor networks, as advocated by Rolls and Amit;
however, due to its superior handling of the compositionality issue, I favor the “exotic
attractor” or itinerancy coding model, which could play a role in both (long term)
memory formation and short term memory.

Stimulus Related Spatial Localization of Activity in Inferotemporal Cortex

Since the population code of Soca does not lead to asymptotic spatially localized
activity in certain units, some alternative explanation is required to explain the
observations of Tanaka and coworkers on spatial localizations, i.e. a small set of activated
regions, with some small displacements of the spots by changing stimuli.

Several possible explanations are envisioned. In a biological system, the state
vectors established by learning could be provided as input to the itinerancy coding
network of Tsuda (Tsuda 1992) for permanent storage. Comparison would be
implemented by some synchronization operations of the Soca network output with such
an encoded memory, with success or frustration of synchronization driving behavioral
response.

In this view, synchronization opponents, itinerancy coding, and competitive
synchronization comparison processes are envisioned as the basic operations of object
representation and recognition in biological systems. The work presented here
emphasizes only the first aspect of this view of biological form processing, while other
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investigators have focused on memory (Tsuda 1992) and competitive synchronization
processes.

This is a rather complex formulation which I must consign to the future work
category; I also think it is more appropriate to a longer time scale encoding and
recognition strategy involving eye movement scanning strategies. Some proposals more
suited to preattentive rapid recognition are outlined here, which envision memory as
more directly related to the oscillation structure and control parameters in the Soca
network.

Selectionist Responses for Ensemble Response Character

One possibility is that Soca-like classifier networks are arrayed across anterior I'T
cortex; as they respond to input, some selection process occurs in which ensemble
responses with undesirable characteristics (too synchronized during a pre-readout epoch)
are suppressed by auxiliary networks sensitive to these ensemble responses
characteristics.

Possible support for this theory comes from the optical studies of Tanaka and
colleagues demonstrating a small spatial shift of maximum activity given different
viewpoints of a stimulus. One possibility for the developmental structure and function of
the anterior TE is that regular spatial gradients in some microcircuit parameter lead to a
spatial array of columns analogous to the control space of the Soca networks. The small
variations in response surface in the {bifurcation, coupling} control plane might lead to
changes in maximum response to different views under such a selection criteria, with
abrupt changes at critical transitions.

Anterior IT as Temporal Pattern Recognizer

An alternative proposal for explaining the results would re-envision a role for
locally coded, combination code column “units” as proposed by Tanaka. Rather than
being selective for (distal) feature combinations, such units might instead be responding
to specific ensemble frequency combinations in the transformed signal, which might be
computed upstream in the TEO, pIT or V4 regions. This detection could be on the basis
of recognizing specific temporal patterns, such as a preferred set ensemble frequencies
occurring in a short time window, or more distributed response where a local column
responds to the ensemble frequency change in the last two fast cycles at the optimal
readout time. The latter columns might then be linked by learning procedures.

Memory Based Search by Localized Slow Wave Interactions

Another proposal would suggest that a remote region cooperates with certain
regions of IT to establish a Soca-like computation by injecting spatially localized slow
wave activity into certain regions. This extra activity functions to change bifurcation or
coupling parameters and resulting “stimulus tuned” ensemble frequency or phase
distributions; however, it is detectable as an activity level when the incoming stimulus
matches the expectation. This would suggest that the amplitude might be modulated and
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that if multi-channel local field potential studies were conducted in an area known to be
activated for a particular stimulus through optical recording, the level of slow wave
activity might be increased relative to non-active regions.

The findings of Nakamura of slow (4-6 Hz) stimulus related oscillations at the
neuron level in the temporal pole are intriguing, suggesting to me that this may be the
most plausible theory of matching. Correlation studies between these neurons and the
temporal structure of upstream areas (TEO, V4, and pTE) could be performed to
investigate whether these are deterministically linked and whether a causal flow can be
determined.

A slight variation on this scheme envisions more intrinsic dynamics in the local
regions. Local columns might have characteristic oscillatory structures and distributions
which attempt to match, by synchronization or resonance phenomena, stimulus-created
oscillations like those of the Soca network. Activation of parallel areas could be an
artifact of best possible matches, while those areas with intrinsic dynamics failing to
match the incoming structure have their activity suppressed.

In a primed search scenario, the slower oscillations observed by Nakamura in the
temporal pole could interact with the characteristic local oscillatory structures to
modulate the responses, allowing a match only for the local structures with a compatible
slow wave dynamics. Correlation studies between the TE areas and the anterior temporal
pole, using data such as Tanaka feature combinations, could explore possible
interactions. Searching for one object A while measuring the response to putatively
optimal complex stimulus B for a local region could show changes in the correlation
structures of A and B, ultimately leading to suppression of activity. Searching for A and
local region with optimal stimulus A should show a different correlation structure;
observations of these dynamics could provide clues on how comparison is performed in a
more complex dynamics scenario.

Transient Synchronization

The synchronized periodic oscillations seen in primary visual and prefrontal
cortex have been chiefly interpreted as signatures of binding of features for segmentation
and other Gestalt phenomena. I have suggested that such transient synchronization could
also play a role in establishing the correct initial conditions for a Soca-style cycle of
spatial cooperative processes under a modulated synchronization dynamics.

If some technique could be devised to interfere selectively with synchronization
processes observed early in the recognition cycle in IT cortex, the effects of this on
recognition performance could be examined. Theories of object recognition predicated
on rate codes should predict little effect of synchronization; the present theory predicts
substantial effects. This could be modeled by dispersing initial conditions about their
current baseline values.

Aperiodic Oscillations

Aperiodic oscillations with synchrony and modulations of synchrony have been
observed at various scales; certainly nonlinear dynamics are a potential source of such
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structure. At issue, though, is can we determine whether temporal codes are relevant, and
whether they are produced by chaotic micro-circuit dynamics or reflect other types of
computation (perhaps modulation of inputs with primed memories at the neural
microcircuit level, as suggested by Eskandar et al (Eskandar, Optican et al. 1992).

The work here, stressing population codes, suggests that population measures
through local field potential arrays or optical methods are the most promising techniques
to address the question. If coding is distributed over populations and not localized to
specific units, optimal stimulus predictions should be obtained from population measures.
The differences in performance might not be evident unless complex stimuli are used.

Epochs of Desycnchronization and Synchronization

The modulations in effective connectivity (interpreted from correlations) can be
explained in this way. As rhythmic volleys come into local recurrent networks from
thalamic or other cortical regions, they change effective bifurcation and coupling
parameters in the target local structure. For a given stimulus, the time course of
synchronization is co-determined by inputs and by the dynamical flows inherent at a
point in the bifurcation-coupling parameter plane. As demonstrated in the present work,
such a dynamical flow may serve computational roles, functioning as a dynamical
recognizer.

However, it is possible that modulations in effective connectivity arise naturally
in the processing of coordinated arrays of chaotic oscillators, during representation
formation or recognition, even in a single epoch. This should naturally occur as
oscillators approach one another in phase space, whether the macrostate variable is
interpreted as spike phase or ensemble average frequency.

Studies of modulations in correlation and effective connectivity as pioneered by
Aertsen et al. (Aertsen, Gerstein et al. 1989), if performed in IT cortex along with
response histogram procedures of Gochin et al (Gochin, Colombo et al. 1994), could
reveal whether the best stimulus predictions are obtained in intervals of increased
correlation for many pairs, as the present theory of computation and coding for object
recognition would predict. RBF networks would predict no relationship between the
highly correlated epochs and best histogram prediction.

The issue is confused by doubts over whether sub-regions of IT represent the
locus of a feed-forward representation network, or an area of comparison of incoming
dynamics with memory representation by unknown processes (possibly involving
synchronization dynamics). In tasks with a visual memory component (the monkey must
release a bar when a match to the target is shown after several distractors) it has been
shown that neuronal responses are decreased substantially from their optimal stimulus
when a stimulus matching the target is shown (Miller, Li et al. 1991).

Based on the various reviews cited earlier, we can exclude the anterior section
(aTE) as being the likely site of comparison and priming dynamics. The best candidate
regions to explore for Soca-like dynamics to be generated are intermediate ventral stages,
primarily V4 and TEO.
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Spatio-Temporal Patterns

One of the results presented here might be investigated in multi-channel local
field potential or microelectrode array studies. In the study of parametric curves, the
representations (sampled distributions) tended to have higher co-occurrence entropies as
learning progresses. I am unaware of any multi-channel data analyzed by this criteria.
One might examine whether this measure is predictive of differences in performance on
recognition tasks.

Psychophysical Approaches to Theory Resolution

When specific views of 3D objects are used for training, error rates are shown to
increase with rotation angle. This is one argument in favor of the RBF ensemble
approach over the Soca model. However, this is presumably due to the fact that I did not
supply or enforce conforming to any particular view in the learning process; another
network based learning process using the same basic normalization principle but with a
bias towards conforming to a view meeting some abstract (but temporally localized)
principle might exhibit this effect. When only two views were used for training,
peformance was highest on the trained views, but the fallout with view distance was
irregular. This may also in part be due to the large angular separation between views
provided to the network.

In order to discriminate between normalization in the Soca and RBF approaches,
one might perform psychophysical investigations into preferred or canonical views. In
the Soca approach, one might expect the preferred view to be that which is closest to the
mean classifier output over all views, given the optimization criteria found to be
successful here. If some class-separation strategy such as the maximum cross-entropy
strategy is employed, the representation chosen, and corresponding best-map-to-mean
view, would be expected to vary based on presentation order.

Recent view-based psychological theories have focused on the role of diagnostic
features. A finding that presentation order dominates diagnostic features in determining
preferred views would be evidence in favor of the maximum cross-entropy principle in
determining representation. Presentation order has been observed to affect the neuron
level activity during the delay (memory) period of a matching task, with the most similar
activity arising from successively presented objects, even though there is little obvious
relationship between the successively presented stimuli.

As I have repeatedly pointed out, however, multiple neuropsychological
strategies and subsystems may be active, exploiting different regularities of the
environment. Diagnostic features may be exploited by an alternative subsystem which is
biased towards dominance by the nature of the task. Tarr et al. state that match to
sample tasks, where a single target is identified, may bias subjects to rely on critical
diagnostic features which may not scale well. In contrast sequential matching and
naming, with continual presentation of different objects, elicits the formation or
activation of a new representation at every trial.
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The Encoding of Stimulus Meaning

On the basis of extensive studies in olfaction, W. Freeman has repeatedly
stressed that neural dynamics encode the stimulus meaning, rather than a direct
transformation of the feature space (Freeman and Barrie 1994). This is evidenced by
changes in the stimulus evoked dynamical patterns for the same stimulus depending on
the reinforcement paradigm last used with that stimulus. While I have not stressed this
important point, which arguably should apply to other sensory modalities, I believe that
this paradigm is compatible with the Soca classifier approach, as follows. We might
consider that restricted areas of the network control space correspond to different
motivation and arousal states related to emotional control of behavior. When a stimulus
is learned, the dynamical encoding is restricted to those producible by control parameter
sets in this subregion of the control space.

This assumes that possible solutions to a task like forming normalization
solutions to multiple views are rather dense in the control space. The only evidence I
have for this is the relatively successful search process with relatively few (3000)
parameter sets explored. Further research on the density of such solutions would be of
general interest, and in support of this theory of behaviorally relevant encodings.

SUMMARY: MAIN CONTRIBUTIONS

The main contributions of the thesis, from the perspectives of several disciplines,
are summarized now.

In terms of pure dynamics of discrete maps, exploratory computational studies
examined the short time (transient) behavior in two stage coupled logistic networks,
where the stages form synchronization opponents adapted to a family of input forms. By
opponents, I mean that the first stage has dynamics resulting in expansion of the phase
space volume, while the second stage is, at least transiently, contracting in phase space
volume. Initial conditions were binary distributions, which considered from the
standpoint of synchronization dynamics represent an artificially synchronized starting
point for the evolution of the network.

Some simple preliminary experiments examined transients in two map systems
and lattices, with a range of parametric variation in both single stage and opponent stage
scenarios. Parameters studied included synchronization over the bifurcation and coupling
control plane, the effect of distance between the initial distribution components, and the
instantaneous time distributions over a range of parameters with geometrically structured
and spatially randomized binary distributions as initial conditions. In accordance with
the more detailed spatially tuned chaotic neural models (Hansel and Sompolinsky 1992),
it was shown that random spatial distributions produce relatively smooth distributions as
the bifurcation parameter is varied while oriented initial conditions produce more
irregular distributions. Coupled map lattices produce similar phenomena with relatively
low computational cost. Smoothness in the time evolution and synchronization of a two
map systems after small iteration counts suggests that some parameter perturbations will
be tolerated.
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From the perspective of pattern recognition, a method involving locally
coupled, synchronization modulated nonlinear oscillator arrays was demonstrated to form
a population metric space representation of objects, with partition cells in the dynamcal
phase space taken as the dimensions of the space. In one family of experiments a metric
space is explicitly constructed; in another, the objects do not occupy an obvious metric
space, but clustering of objects with similar structure in a representation space emerges
from learning to normalize views to a common distribution.

This spatiotemporal style of computing a representation contributes to resolving
the classic dilemmas for representing local features, feature conjunction, and binding,
while affording rapid recognition. The method was demonstrated to reach recognition
rates as high as 85% in a nearest neighbor match scenario with 20 objects. The
formalism of dynamical recognizers was extended from low dimensional dynamics to
high dimensional dynamics

At the intersection of dynamics, computation and pattern recognition,
preliminary evidence is presented that, for the given tasks and view normalization
approach taken here, the non-stationary dynamics outperform a single preferred
dynamical regime, such as the transition to chaos dynamics. At the outset of this work, it
was hoped that a single dynamical stage might be found which solved the similarity
problem for many objects. In a family of experiments recognizing objects rotated in
depth, it was shown that a single dynamical stage is effective at rates far above chance,
but results in 4% higher error rates than the non-stationary Soca strategy. There was also
a slight trend toward lower average classification times with the nonstationary system.
Given the non-deterministic nature of evolutionary learning, additional trials are needed
to establish statistical significance of this result. This work is in progress, along with
efforts to explore the effects of varying mutation rates from the baseline values used
throughout the present study.

This small difference between single and two stage dynamics was unexpected;
examination of sampled lattice time series reveals that during coupled chaotic evolution
there are fluctuations of the occupied phase space volume at each step, so that
characterization of a stage as subspace-desynchronizing or subspace-synchronizing relies
on time averaged behavior, rather than an obvious monotonic increase or decrease in
volume. If the recognition rate and time advantages hold with more trials, a deeper
explanation of these advantages in terms of Markov chain dynamics would still be
desirable. At this time, it seems that the original intuition motivating the Soca cyle is too
simple an explanation, failing to capture the performance of the single stage system. The
conceptual framework of probabilistic finite state automata and dynamical recognizers
may be sufficient to explain the latter, but why should non-stationarity offer any
improvement?

However, it is intriguing that an evolutionary scenario of improving performance
with subtle improvements in timing control is suggested. The present task of recognizing
the equivalence of views is emblematic of task-specific, constructive memory systems,
where the memory consists of programming a general network topology with an implicit
network of state flows between dynamical partition cells. Coordination dynamics
between memory and recurrent computational modules may involve such programming
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of both task related computational systems and possibly also the programming of readout
windows, sensitizing “receiver assemblies” to perform their tasks at specific times in
concert with Markov-chain like computations.

A few preliminary results are presented regarding evolutionary learning of a
computation with coupled maps. Unsurprisingly, evolutionary learning outperforms a
random search strategy (15% error for the best evolved solution vs 29% for nearest
neighbor classification with random search), with both evaluating 3000 parameter sets
(genotypes). One notable aspect of the learning is that it occurs on the basis of an
abstract objective function rather on the ultimate task for which the network is designed.
Since the task itself involves parallel evaluation of all classifiers, this approach provides
substantial speedup.

The stimulus equivalence experiments showed that the usual practice of Gaussian
mutation of real valued genes, performed worse (also 29% vs.15% error) than random
selection of new values from the entire range of possible values. This was conjectured to
be due to the nonlinear mapping of the gene to the output space. These preliminary
results concerning learning are based on very few learning trials; computing mean error
rates over additional learning trials should be performed before drawing firm conclusions
on the relative merits of mutation rates and single stages vs. multiple stage dynamics. .
The possibility of improved performance through timing control seems helpful in
understanding biological evolution, which presumably might have more difficulty
searching a network space where effective topologies and network configurations are
sparse islands in a sea of ineffective parameters. Experiments to assess the ease of
learning tasks through network evolution in CML systems and more conventional
connectionist architectures are called for.

At the intersection of high level computer vision, visual psychology, and
neuroscience of the ventral pathway, it is shown that cooperative interactions of
nonlinear oscillator transient trajectories can perform view normalization and view based
recognition with recognition rates comparable to a recent feed-forward model, a
statistical model with a rich input feature space. Unfortunately no comparison has yet
been performed on a common set of data, but the data used here are challenging for
several reasons:

1. Larger angular separation between views.

2. Inclusion of “extreme” end views in the recognition task.

3. Lower raw information due to use of silhouettes rather than color or grey scale
images.

Another important distinction is that the Soca classifier set was trained solely on
information theoretic principles, in sequential presentation. In contrast, the Chorus and
SEEMORE systems used statistical overviews of the entire object world to choose
network centers and set weights on feature spaces. I would not claim that there is no
possible justification for such a procedure on biological grounds3* .

34 Freeman and Barrie have argued that one of the advantages of encoding all memory in a chaotic
attractor is precisely that it contains the entire history of experience, which can be used to
influence the formation of new memories (Freeman and Barrie 1994).
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View interpolation with an ensemble of radial basis function networks has been
recently proposed as a biologically motivated object recognition, and claimed to fit a
variety of psychological and experimental neuroscience data; I explored several questions
about the relative merits of the two approaches and suggested a multi-channel experiment
to discriminate between the approaches.

The visual world used for training and testing was limited to isolated objects to
focus on the problem of recognizing objects rotated in depth. Related paperclip objects
have resulted in substantial error rates for humans and monkeys in learning and
recognition tasks; the choice of data was motivated by continuity with such literature,
and by the possibility of making predictions which can be tested with the same stimulus
set. Modeling of primed search and multiple objects in a scene would be logical target
tasks for next generation of this research; this might proceed in parallel with extensions to
strictly network based learning and recognition.

The model of recognition is still a hybrid network - computational model rather
than a pure network; in the present form, it cannot be considered as a complete biological
model. Further work is required to synthesize a completely network based approach, but
the principles discovered over the course of modeling and embodied in the objective
functions suggest the effective form of network learning dynamics. In addition to
network based learning,, a network based recognition strategy is required to more closely
match biological observations. Two possible network architectures — synchronization of
itinerency codes, and a back-end of ensemble frequency combination coding units were
proposed as possible extended frameworks to increase the biological realism.

Finally, in the field of computational neuroscience, it was shown that
modulations in the synchrony of large scale neural ensembles could play a role in
learning and recognition. These modulations are affected in terms of bifurcation and
coupling parameters of spatially distributed nonlinear systems. I offer a new
interpretation for such modulations in the context of the synchronous opponent
cooperative activity dynamics (Soca networks).

Previously, such modulations in synchrony, observed in multi-unit studies in pre-
frontal and primary visual areas, have been interpreted as signatures of feature binding
over space. I have proposed an understanding of such modulations as the unfolding of
computational and coding processes in what I termed “coherence assemblies”.

The concept of information processing by symbolic dynamics, proposed long ago
in the context of low dimensional systems, (Nicolis 1986) is extended to a higher
dimensional system, resulting in a hypothesis of population coding via partition cell
metric spaces.

A novel interpretation for transient synchronization episodes observed in primary
visual cortex is proposed. My claim is that synchronization may be required in earlier
stages of the visual pipeline - concurrent with or after segmentation processes - in order
to prepare for the phase space expansion (desynchronization) stage of the two opponent
stages performing a view normalization computation in IT or closely related form
processing areas. This preparation consists of the creation of a high contrast primal
sketch, which serves as an effective initial subspace for the spatiotemporal computation
and population coding.
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If epochs of increased synchronization and correlations are observed in
association areas (as they have been in primary and prefrontal cortex) these may
correspond to the state space contraction (synchronization) stage. These epochs should
be correlated with increased stimulus prediction performance relative to epochs of
desynchronization obtained from multi-channel vector measurements.

The intrinsic difficulties of reconstructing the behavior of non-stationary,
spatially distributed oscillating systems in the brain suggest an important role for
modeling. Models and simulations allow a constructive approach (Kaneko and Tsuda
1994) to supplant or enhance attempts at reverse-engineering the behavior of neural
systems from correlations of neuron level components with stimulus, behavior, and other
low level components. Constructive, in this context, refers both to the role of the network
designer (human, evolution, or evolutionary computation) and to the rich capabilities of
dynamical state flows and synchronization operators to rapidly construct implicit
networks.

This is especially important if neural systems function by intrinsic or stimulus
linked non-stationary behavior, since few methods exist for characterizing non-stationary
dynamics and deducing the system function. Given clues about system function derived
from evoked potential and spatial and temporal trends in synchronization, along with
classical information theoretic principles from pattern recognition, models may be built
for specific cognitive phenomena. Once a model exists, the same methods used for
analysis of multi-channel biological signals (cross-correlation, coherence, and higher
order spectral measures) can be applied to these artificial systems, leading to a fruitful
interaction between theory and experiment.

In the simulation work presented, such signal analysis measures have not yet
been applied to the resulting time series; rather, the observed trends in medium scale
dynamics are taken as motivation to explore base nonstationarities in the service of some
task, presently this exploration proceeds by evolutionary computing methods. Thus the
work is in the spirit of constructive modeling, as defined above. By demonstrating a
functional role for such nonstationarities in a classical perceptual task, I hope to
contribute to expanding the dialog on neural computing mechanisms to include such
relationships between modulations in synchrony, bifurcations as control for such
modulations, and population computation and coding.

While speculative discussions of these topics are common among
experimentalists and theorists in the last decade or so, concrete engineering models
which perform well on a challenging task are still rare, as are attempts to systematically
relate chaotic synchronization to any underlying neuroscience. I have attempted to
realize both goals here in a fashion which is accessible to workers coming from
psychology, experimental neuroscience, and engineering, providing enough background
to justify what otherwise might seem very abstract forms of computation. If, by this
effort, the coupled map style of computation gains credibility as a technique in
computational neuroscience, these research communities may all benefit from an
important new tool for understanding the programming style hidden in the rhythms of the
brain and mind.
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Appendix 1: Formal Language Definitions

Portions of this material are adapted from (Gurari 1989).
A Type 0 grammar G is defined as a quadruple <4 , 2, P, S >, where

A is an alphabet, whose elements are called non-terminal symbols. A* denotes
the set of possible words formed from concatenating these symbols.

Y is an alphabet disjoint from N, whose elements are called terminal symbols.

P is a relation of finite cardinality on (A)*, whose elements are called production
rules. Moreover, each production rule (a,) in P, denoted a—f3, must have at least one
non-terminal symbol in A . In each such production rule, a is said to be the left-hand side
of the production rule, and 3 is said to be the right-hand side of the production rule.

S is a symbol in A called the start , or sentence , symbol.

A grammar G =<N, X, P, § > is said to be a right-linear grammar if each of its
production rules is either of the form a— xf§ or of the form o — x, where a and f§ are
non-terminal symbols in A and x is a string of terminal symbols in X*.

The grammar is said to be a left-linear grammar if each of its production rules is
either of the form a—fx or of the form A— x, where a and 3 are nonterminal symbols in
A and x is a string of terminal symbols in Z*.

The grammar is said to be a regular grammar if it is either a right-linear grammar
or a left-linear grammar. A language is a regular language if it is generated by a regular
grammar.

Such a Type 0 grammar G = <4, X, P, $> is said to be context-free if each of its
production rules has exactly one non-terminal symbol on its left hand side, that is, if each
of its production rules is of the form A->alpha .

The concept of a grammar can be extended to a stochastic grammar. The set P of
productions can be associated one to one with an set m of probabilities on each
production. The resulting system <A, X, P, 7, S> 1is a stochastic grammar. The set of
productions is a stochastic language. A state transition graph consisting of nodes for each
element in A can be defined, with labeled arcs giving the probabilities of emitting a new
token; this graph specifies a Markov process which generates strings in the stochastic
language L.
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Appendix 2: Discrete Markov Chains

In this appendix basic definitions related to Markov chains are presented
following the treatment in the Sochastic Processes text of Lawler (Lawler 1995). I
occasionally interject comments drawing connections to dynamical systems. While
Markov chains share certain concepts with dynamics systems such as periodicities,
transient states, the basic dichotomy between deterministic and probabilistic systems
remains. By considering coarse grained partitions of the dynamical phase space(as is also
performed for symbolic dynamics) as the states in a Markov chain, one can convert from
the deterministic to the stochastic mode of analysis.

STOCHASTIC AND MARKOV PROCESSES

A stochastic process is a collection of random variables X, indexed by time.
When time is a subset of the nonnegative integers {0,1,2 ...} the process is called discrete
time. The random variables take values in a state space; this may be discrete (a finite or
countably infinite set) or continuous. A Markov process is a stochastic process with the
restriction that the change at time t is determined by the value of the process (i.e. the
value of the state space scalar or vector in R’) at time t, and not by values at times before
t.

MARKOV CHAINS

A time homogeneous Markov chain is a Markov process described by a initial
probability distribution and a transition probability matrix P, where the elements in the
matrix P; are independent of time. The matrix P must be a stochastic matrix, satisfying
the conditions:

OsBj <l,Ll<i,j<N

N

YP,=Ll=<i<N

j=1

The n-step transition probabilities p,(i,j) are given by P".

An absorbing state is a state which leads to itself with probability one. This is
equivalent to a fixed point attractor in a dynamical system.

A Markov chain is irreducible if all states communicate, i.e. there is a path
between the two states in the transition matrix. Otherwise, the state space is partitioned
into disjoint sets called communication classes. These may be transient or recurrent,
inheriting properties from their constituent states. A transient state will leave the state
with probability 1 (when the system is captured by an absorbing state).

The partitioning of states into transients and absorbing states corresponds to the
partitioning of contracting dynamical systems into attractors and (basin) transients. For
expanding (chaotic) dynamical systems, there may be forbidden regions of phase space
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on the attractor, which nevertheless could be given as an initial condition or reached by a
perturbation.

A recurrent Markov chain is one for which each state is visited infinitely many
times. In contrast, a transient chain is one for which each state is visited a finite number
of times.
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Appendix 3: Signal Analysis

Autocorrelation

Autocorrelation emphasizes periodic components of a time series by comparing
values separated by a regular time interval (lag). Each sample of the time series is
multiplied by the value shifted in time by a fixed lag; the sum of these products is the
autocorrelation function for a particular lag time. The autocorrelogram is generated by

1. Removing the mean from the signal
2. Normalizing by signal power
3. Plotting lag time (x axis) vs. the normalized correlation coefficient.

A similar process, cross-correlation, is used to compare two time series.
Autocorrelation can, of course, be viewed as a special case of cross correlation.

N-1
R [K]=1/NY x[n]yln + k]
n=0

where x[n] and y[n] are values of time series x and y at time n, k is the lag of y[n] with
respect to x[n], and N is the number of samples in series or window in which the
function is computed.

Let N be the number of sampled points in two signals x and y.

Power Spectrum

S (f)= FFT(x) jv FFT (x)

where FFT  is the complex conjugate of FFT(x) (e.g. the negated imaginary part
of FFT(x)).

Cross Power Spectrum

FFT(y)* FFT"
() = FPTO)* PP (1)

Coherence function

o [ (Averaged Sy (f)I)*
Y Averaged S, (f) * Averaged Syy(f)
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The coherence function requires an average of two or more measurements of the
signals under analysis. For a single measurement, it would register unity at all
frequencies. To average a complex quantity such as the cross power spectrum S, (f), sum
it in the complex form, divide by the number of averaging trials, then convert to
magnitude and phase with rectangular to polar conversion.. The auto power spectra,
Saa(f) and Sgp(f) are real quantities.
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The poet's eye, in a fine frenzy rolling,

Doth glance from heaven to earth, earth to heaven;
And, as imagination bodies forth

The forms of things, unknown, the poet's pen

Turns them to shapes, and gives to airy nothing

A local habitation and a name.

Shakespeare, A Midsummer Night's Dream, Act 'V, sc. 1

Solve et coagula, painting / assemblage by D. DeMaris, 2000
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