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Abstract 
 
A novel approach to shape recognition has been developed using a hybrid system of nonlinear reaction 
diffusion and statistical matching. The reaction diffusion process is implemented using a chaotic coupled 
map lattice initialized with states derived from a binary image of the shape.  The initial set of states from 
the set {0.0,1.0} is transformed by the dynamics into a rich distribution of states in the range {-1.0, 1.0}. 
Histogram binning of the state distribution is used as the basis for statistical matching.  Results on a set of 
test shapes compare favorably with human judgments of shape similarity, and may assist in the search for a 
biologically grounded theory of shape perception. The  paper describes the method, experimental results, 
and introduces some of the theoretical background motivating the approach.   
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1.   Introduction 
 

Succesful  categorization of shapes or identifying a shape most similar to a prototype are 
fundamental tasks  in computer vision, and serve as a a basis for  higher levels of object and scene 
recognition in  images and for object tracking in video sequences. Research into the problem is increasingly 
motivated by new applications in content-based retrieval for image and video databases.  In multimedia 
applications it is particularly important  to conform to user judgments of similarity, and to have a 
representation which can be matched with efficient and, ideally, with  parallel computations.  A few recent 
studies have attempted to compare human similarity judgments with the results of  testing several different 
algorithms.  Mumford et. al. [Mumford 89] studied the confusability of fifteen simple equal  perimeter 
polygons  for pigeons and for a group of twenty-eight  human subjects. The best performing algorithm 
(feature graph matching) achieved a correlation of .8 with the human data  after  an ad hoc fix to emulate 
human confusion of mirror images.   
 

The diffusion spectrum method described here was tested on the Mumford polygons and was 
found to agree with the human best match in 9 of 15 shapes, and to include the human best match in the top 
3 matches in 11 of 15.  The system for shape categorization and recognition described here is essentially a 
hybrid. A chaotic map lattice front end generates patterns, which are ultimately treated statistically as 
populations. No training  is necessary; categorization is intrinsic in the network dynamics. The approach 
promises to address one of the early criticisms of theories on the role of chaos in biological perception 
[Skarda 87], showing that chaotic reaction diffusion ,  particularly  with non-stationary dynamics, may 
indeed be useful  in computing similarity of  signals.      



2. Diffusion Spectra Method and System 
 

Reaction-diffusion models have been studied for over 40 years to describe pattern formation 
processes, and  are currently in use for image processing applications such as halftoning  [Sherstinsky 94]. 
Until recently these problems have been formulated as partial differential equations (PDE), and solved with 
computationally expensive numerical methods [Price 87, 93]. An alternative formulation for such systems 
known as coupled map lattices (CML) based on discrete time, discrete space, and real-valued state 
representations of complex spatially coupled systems was introduced by Kaneko [Kaneko 89, 93] . Similar 
models  have appeared more recently in the neural network literature described as cellular neural networks 
[Cimagalli 93], and earlier as fractal chaos networks  [Perez 87] and cellular dynamata [Abraham 91] .  
These models are related to the branch of  neural network analysis involving dynamic patterns in cell 
assemblies [Katchalsky 74] , [Wilson 72].  and  most visible today in study of  perception in the olfactory 
bulb and the encoding of perceptual stimuli as chaotic attractors in a spatially distributed network [Yao 91]. 
 

The notion that discrete temporal dynamics may play a large role in perception and learning is a 
relatively new one.  Discrete time clocking dynamics may be used in cortical assemblies at different time 
scales to establish (fast) entrainment and (slower) bifurcation  frame rates; at frame boundaries phase 
dependent Hebbian learning can occur [Baird 90]. The characteristic oscillation rates seen in cortex that 
might correspond to the iterations in coupled cell assemblies produce a reasonable fit to the response time 
data in human shape recognition experiments, using the numbers of iterations found to be effective so far. 
Specifically, 40 Hz signals are identified as likely candidates for entrainment cycles;  while recognition 
times reported for the shapes here ranged from 400-550 ms. This puts an upper bound on the number of 
iterations to compute and match against a target shape of 16-22 iterations,  if computations similar to those 
considered here are involved in shape discrimination. 4-8 iterations have been used in these experiments, 
allowing the remaining  time to be used for comparison or memory activation  operations.   
 

A coupled map lattice (CML) is a dynamical system with discrete time, discrete space, and real 
valued  state. The lattice consists of  field variables representing macroscopic (distributed) qualities, such as 
temperature, fluid velocity field, local concentration of a chemical substance,  or in our case  neuron pulse 
density in a local assembly with diffusion (entrainment) to neighboring assemblies.  The process is 
decomposed into simple parallel dynamics at each lattice point, with each process carried out succesively.. 
In the present model, this means that at each iteration, a diffusion step is performed, then a reaction step.  
 
 The entire diffusion step can be expressed as: 

 

where Sd  is the intermediate diffusion array,  t  is the current time step,  x, y are the spatial indices of  the 
pixel array S at the center of the diffusion neighborhood,  S  is the state variable at each pixel of the array, 
and c is the coupling constant restricted to the range [0.0 to 1.0]. 
 
 The second computational unit applied in each time step is the logistic map: 
 

 
 
where S, t, x, and y are as above and where b is the bifurcation parameter, restricted to the range (0.0 < b < 
2.0). S is restricted to the range (-1.0 < S < 1.0).    
 

The essence of the method here is to transform the original image, assumed to be a binary 
intensity image, into a richer distribution of intensity values. The distribution evolves through an iterated 
diffusion process combined with a nonlinear function computed from the current pixel value. After a few 
iterations the state of the evolved array is a pattern which is characterized by a histogram of intensity 
values. While information is lost by ignoring spatial relationships in the resulting pattern, the nature of the 
nonlinear diffusion process results in a distribution which captures many aspects of the original spatial 
relationships.  Angles, slopes of lines and local curvature result in unique local state distributions after a 



few time steps. The raw histograms for objects are normalized to reduce any explicit size dependencies, by 
simply dividing the integer bin counts by the total number of pixels in the object. Shape similarity between 
any two shapes can then be computed by a simple Euclidean distance metric. Experiments were performed 
with 64 and 128 bins, where the bin values range from -1.0 to 1.0. It was determined that 128 bins gave 
better results due to the loss of resolution and to a fractal clustering of the distribution.. Early studies on the 
period doubling bifurcation points of a single parabolic map show that the attractors in successive 
bifurcations are clustered in this way [Hofstadter 85],  but it came as something of a surprise to the author 
that a chaotic spatial process would respond this way.  The analysis in terms of extreme value theory 
described in [Miller 92] may be the best explanation for the process, with the coupling and bifurcation 
parameters placing the dynamics in a critical regime  to generate fractal attractor basin distributions.  
 
 3. Experimental Results 
 

 
Figure 1: The top row is the target shape; each column beneath a target are the 4 best matches, obtained 
using 4 iterations at b=1.5054, c=.3317 followed by 4 iterations at b=.9055, c=.3317 
 
The parameters used in this experiment could be described as a quenching cycle; the initial bifurcation 
value b=1.5054 is in a weakly chaotic area of the dynamics; running for 4 steps generates a rich distribution 
of states. Previous experiments with higher b (more chaotic) and more iterations indicate that all shapes 
tend toward a flatter, noisy distribution. This experiment approaches a noisy distribution, but then moves  
the maps into a period 2  range (b=.9055). After about 20 iterations, the state distribution will collapse into 
a binary distribution again; in a few iterations in the period two regime some states progress toward the 
attractor faster than others, and this seems to correlate with the original pattern which generated the 
attractor. The quenching phase improves performance over a simple 4 step evolution for this parameter set, 
but it may be unnecessary if  better base bifurcation and coupling points were found. 
  
4. Summary 
 
A novel method for computing shape similarity has been developed .  Initial tests on a small set of shapes 
indicate that the method compares favorably with other algorithms in correlating with human similarity 
judgments; testing on a large set of shapes is underway. A few explorations on  imagery with finer feature 
grain and higher spatial frequencies (characters and fonts) indicate that a multi-scale implementation is 
probably  necessary to handle more diverse recognition tasks.  It has been shown that earlier criticism 
of chaotic neural models being unsuitable for computing similarity measures may not  hold when non-
stationary dynamics and interacting time scales, such as the quenching cycles reported here, are employed.  
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